Static Code Analysis Tools for
[dentifying High-Risk Software Modules:
An Overview

Prepared for
NASA Independent Verification and Validation Facility
FAU Technical Report TR-CSE-00-21
Taghi M. Khoshgoftaar~
Edward B. Allen

Florida Atlantic University
Boca Raton. Florida USA

July 2000

*Readers may contact the authors through Taghi M. Khoshgoftaar, Empirical Software Engineer-
ing Laboratory, Dept. of Computer Science and Engineering, Florida Atlantic University, Boca Ra-
ton, FL 33431 USA. Phone: (561)297-3994, Fax: (561)297-2800, Email: taghi@cse.fau.edu, URL:

www.cse fau.edu/esel/.

FAU Technical Report TR-CSE-00-21 6

2 What 1s “measurement”?

2.1 Foundations

Measurement theory provides a body of results that can guide the formal definition of
software metrics. Fenton and Zuse each give an overview of the representational theory of
measurement as applied to software measurement [26, 27, 118]. Krantz et al., and Roberts
each present theoretical foundations [77, 103]. This section presents some results from
measurement theory. Consider the following basic definitions.

An empirical relation system, C = (C', R), consists of a set of objects, (', and a set
of relations on them, R [26].

A numerical relation system, N" = (R, P), consists of a number system, and a set of
relations. P. The real number system, R, is preferred for software measurement, due to
its rich set of relations that are familiar to engineers.

A measure is a mapping from an empirical relation system into a numerical relation
system.

M:C—>R (1)

[t must map each object to a number, and each empirical relation to a numerical re-
lation, such that the mapping is a homomorphism, i.e., such that all relations in the
empirical relation system hold if and only if the corresponding numerical relations hold.
For example, temperature is a measure of an attribute of physical objects. The empirical
relation system embodies our common-sense ideas about heat. The numerical system is
real numbers. If temperature numbers behave in a way that matches our common-sense

empirical system, then it can be shown to be an appropriate measure. A software metric

|

FAU Technical Report TR-CSE-00-21

is a measure of an attribute of a software quality, resource, product, process, or execution.

Formal definition of new software metrics consists of the following stages [29].
1. Identify an attribute for some real-world entities.
2. ldentify empirical relations for the attribute.
3. ldentify numerical relations corresponding to each empirical relation.
4. Define a mapping from real-world entities to numbers.

(Check that numerical relations preserve and are preserved by empirical relations.

on

2.2 Scale types

A scale is defined as a triple consisting of an empirical relation system, a numerical
relation system, and a measure, (C, A", M). Scales may be categorized according to their

properties. As listed in Table 1, the following are classic scale types.

o Nominal scale is essentially categorization.

Ordinal scale is characterized by a strict weak order among objects.

o Interval scale adds the concept of distance to ordinal scale properties.

Ratio scale adds the concept of zero measurement to the properties of interval

scales.

Absolute scale is essentially counting.

FAU Technical Report TR-CSE-00-21

Table 1: Classic scale types

Type Key Concept (Cumulative)

Nominal Classification
Ordinal Strict weak order
Interval Distance

Ratio Zero

Absolute Counting

Table 2: Admissible transformations

Scale Type Transformation Example ¢(z)

Nominal one to one (relabel items)
Ordinal monotonic r>ys ole) > oly)
increasing '

Interval positive linear dlz)=ax+3,a>0
Ratio multiply by olzr)=ar,a>10

positive constant

Absolute identity ola)=(1)x

[v.s]

For example, degrees Fahrenheit and Celsius are interval scales of temperature. De-

grees Kelvin is a ratio scale of temperature because absolute zero is part of the empirical

svstem of chemistry. Other scale types could be devised, such as a scale type for proba-

bility.

Each classic scale type is distinguished by the class of transformations that preserves

the underlying empirical relations. A statement involving numerical scales is meaningful

if its truth remains unchanged if every scale involved is replaced by an admissible trans-

formation, as listed in Table 2, where ¢ 1s a transformation, x and y are measurements,

and a and J are constants.

A transformation is usually a conversion from one unit of measure to another. For

example, conversion from Fahrenheit, [, to Celsius, (', is done by C' = (F + 32)(5/9), a

FAU Technical Report TR-CSE-00-21 9

positive linear transformation of a measurement, which is appropriate for interval scales.
Nominal scale is considered the “weakest” and absolute scale is considered the
“strongest”. Note that a strong transformation is also a member of all the weaker classes.
When one applies an inadmissible transformation to a measurement, one is implicitly as-
suming additional empirical relations.
(Certain common statistical calculations have been categorized by class of admissible
transformations [97]. For example, the following are admissible ways to calculate the

“center” of a set of samples.
o Nominal scale: Mode
e (Ordinal scale: Median
e [nterval scale: Arithmetic Mean
o lHatio scale: Geometric Mean

A meaningful statement about a measurement(s) is one where the empirical truth of
a statement about measurements does not depend on the unit of measure. Table 3 lists
statistics and the classic scale type corresponding to each.

Roberts [103] presents criteria for scale types. Ordinal scale is useful for comparing
and for prioritizing a set of modules. The median is the appropriate measure of the
“center” of a sample of measurements. Interval scale allows more sophisticated statistical
analysis than ordinal scale. For example, the arithmetic mean is the appropriate measure
of the “center” of a sample of measurements. Ratio scale is the most familiar in daily

life. It allows most common analysis techniques.

FAU Technical Report TR-CSE-00-21 ' 10

Table 3: Meaningful statistics

Scale Relations Statistics Test

Nominal Equivalence Mode Nonparametric
Frequency

Ordinal Greater than Median Nonparametric
Spearman corr.

Interval Ratio of intervals Mean Parametric
Std Dev
Pearson corr

Ratio Ratio of values Geometric mean Parametric

Coeffl of Var

Transformations of measures pertains to individual measures. We are also interested
in formal relationships among multiple measures, and in particular, where one synthetic
measure is derived from combining primitive measures, or a dependent variable i1s derived
from independent variables in a predictive mathematical model. According to Roberts
[103], there is no generally accepted theory regarding a scale derived from primitive
measures. However, one can define a derived scale in a narrow sense or a wide sense [103,

pp.76-80][26]. See the references for further details.

2.3 Controversy over scale types

There has been considerable controversy during the 1990’s in the software metrics com-
munity, over whether or not scale types of software metrics should limit one’s choice of
analysis and modeling methodologies. Irom even earlier, this controversy has been ongo-
ing in the statistics community. “Statisticians have generally rejected the proscription of
methods based on the limitations of permissible transformations.” Proscribing statistics

based on scale type does not work [111].

FAU Technical Report TR-CSE-00-21 11

The viewpoint of Mathematics is different from the viewpoint of Science. Axiomatic
measurement theory, as advocated by some software-metrics researchers, is mathematics.
Science. as advocated by other software-metrics researchers, discovers new empirical rela-
tions, which may not be “meaningful” in preliminary work, due to the lack of substantive
theory. One should keep in mind that scale type is defined in the context of empirical
relation systems.

Measurement theory is still developing. For example, measurement theory dealing
with statistical error is not well developed. We recommend a pragmatic approach to
measurement theory as advocated by Briand, El Emam, and Morasca [14]. We suggest
that a software-metrics analyst ignore scale type when doing exploratory statistics. How-
ever, one should use scale type to evaluate conclusions. Measurement theory can help

one evaluate whether conclusions are nonsense [111].

3 What should we measure?

A measurement subject is the object under study, such as a body of software and related
artifacts. We are interested in measuring attributes that are relevant to the software

development.? In particular, measurement subjects include the following.
e Qualities of the software in the context of operations or during maintenance
e Resources used in development
e Products that result from development

e Processes that occur during development

“In this context, we consider maintenance as a type of development.

FAU Technical Report TR-CSE-00-21 12

e [ixecution of the software

3.1 Quality

“Beauty is in the eye of the beholder™ indicates the inherent difficulty in measuring
software quality. IFrom a practical viewpoint, there are various quality attributes each
in relation to a different aspect of software development. “This software is good for
such-and-such.” These attributes are called quality factors [105], such as functionality,
reliability, efficiency, usability, maintainability, and portability.

Our research has focused on indicators of reliability. Reliability is usually defined
as the probability of failure-free execution. A failure is incorrect execution, usually in
the context of operations. According to standard terminology, a fault is a defect in a
program that may cause incorrect execution [81]. Faults are caused by errors committed
by people. Many of our studies focus on the absence of faults as recorded by a problem
reporting system during the period of interest. This is an indicator of reliability, in a
broad sense, irrespective of whether a failure resulting from a fault would be frequent
or rare during operations. Even rare failures can be very important in mission-critical

systems.

3.2 Resources

Software development is a human-intensive activity. The most significant resource needed
to produce software is the efforts of appropriately skilled people. Many researchers and
managers have sought ways to measure the productivity of software developers [29]. This

has been very difficult to do in a meaningful way, because the same product is not

FAU Technical Report TR-CSE-00-21 13

produced over and over, and because the combination of many skills are needed for
SUCCEeSs.

Because of the economic context of most software development, managers must
predict the amount and kinds of effort that will be needed to develop a prospective
software product. Effort estimation has also been very difficult to do with the accuracy

desired by business leaders [29].

3.3 Products

Software product metrics are quantitative attributes of abstractions of software. Software
can be viewed as a static product embodied by source code, or it can be viewed as a
dynamic product while it is executing. This section focuses on static attributes of software
artifacts. However, one should bear in mind that the dynamic behavior of software can
be statically portrayed by diagrams which are subject to static measurement.
Commonly measured static product abstractions include call graphs [89], control
flow graphs, statements, and object-oriented programming abstractions [10, 19]. (Some
of these abstractions may be created during the design phase or they may be extracted
from code in a later phase [1, 6, 23, 117].) For example fan-in and fan-out [37, 91, 116]
are attributes of a node in a call graph, where each node is an abstraction of a module
and each edge represents a call from one to another. Many software product metrics
are attributes of a control flow graph in which the nodes represent decision statements
or branch destinations and the edges represent potential flow of control, similar to a
fowchart. McCabe’s cyclomatic complexity is one of the best known in this category

[83. 84]. Lines-of-code is the best known statement metric. Other examples are Halstead’s

FAU Technical Report TR-CSE-00-21 14

counts of operators and operands [33].

Properties of attributes. Briand, Morasca, and Basili, propose a set of properties in
a formal framework to define measures of common software attributes more precisely [16].
They define the following families of measures on graphs that have certain properties in

COITLITION.

e Size

Length

(C‘omplexity

Coupling
e (lohesion

One could similarly define other families of metrics for attributes of interest to software
engineers. More recently, Morasca and Briand extended their framework from graphs
(binary relations) to relations in general [85]. We adopt their definitions, which can be
used to define measures of many kinds of software design abstractions, and thus, many
kinds of software metrics.

Briand, Morasca, and Basili [16] define a modular system as the context for their
measures, where a module 1s a subsystem.
Definition 1 (Modular System [16])
A modular system, MS, is an abstraction of a software system represented by a graph

with n nodes partitioned into modules, my, k= 1,... ny.

FAU Technical Report TR-CSE-00-21 15

Figure 1: Example of a modular system [2]

Figure 1 is an example of a modular-system graph. This is similar to Figure 2 in
[16]. The modules (dashed boxes) partition the nodes in the system.

Briand, Morasca, and Basili [16] propose a set of properties that defines the concept
of the size of a system. Table 4 summarizes the properties of this family of measures,
and corollaries derived from the properties. In a software metrics context, we reserve the
term size for measures that have these properties. In addition, corresponding properties
of the size of a module, shown in Table 5, can be derived from the system-level properties
in Table 4.

Briand, Morasca, and Basili [16] also propose a set of properties that defines the
concept of the length of a system. Table 6 summarizes the properties of this family of
measures. In a software metrics context, we reserve the term length for measures that

have these properties.

FAU Technical Report TR-CSE-00-21 16

Table 4: Properties of the size of a system [16]

. Nonnegativity. The size of a system is nonnegative.

Null value. The size of a system is null if its set of nodes is empty.

Module additivity. Given a system, S, having modules, m, and m,, such
that every node in S is in m; or my, but not both, the size of this system
is equal to the sum of the sizes of the modules m; and ms.

Size(S) = Size(my|S) + Size(m,|S)

Corollaries

L.

Node additivity. Given a modular system, MS, where each node is a
module, m;,i = 1,...,n, the size of the modular system is given by

T
Size(MS) =" Size(m| MS)

1=1
Monotonicity. Adding a node to a system does not decrease its size.

General module additivity. Given a system, S, with any two modules,
and my such that every node in S is a node in m; or mg or both, the
size of the system is not greater than the sum of the sizes of the pair of
modules.

Size(S) < Size(m;|S) + Size(my|S)

Merging of modules. Given a system, S, with any two modules, m; and
my such that every node in S is a node in m; or my or both, construct S’
such that mq and my in S are replaced by myuy = my U my in S,

Size(S") < Size(m|S) + Size(ms|S)

FAU Technical Report TR-CSE-00-21 17

Table 5: Properties of the size of a module [16]

. Nonnegativity. The size of a module is nonnegative.

Null value. The size of a module is null if its set of nodes is empty.

Module additivity. Given a module, my, in a system, S, having modules
within it, m; and mo, such that every node in my is in my or mgy, but
not both, the size of this module is equal to the sum of the sizes of the
modules m; and mq.

Size(m|S) = Size(mq|S) + Size(m2|S)

Table 6: Properties of the length of a system [16]

. Nonnegativity. The length of a system is nonnegative.

Null value. The length of a system is null if its set of nodes is empty.

Nonincreasing monotonicity for connected components. Given a system,
S. with a module, my, consisting of a connected component, adding an
edge to my does not increase the length of S.

4. Nondecreasing monotonicity for non-connected components. Given a sys-

tem, S, with two modules, my and my, each consisting of a distinct con-
nected component, adding an edge between a node in m; and a node in
my does not decrease the length of S.

. Disjoint modules. Given a system, S, composed of two disjoint modules

my and my, the length of this system is the maximum of the lengths of
the modules.

Length(S) = max(Length(m,|S), Length(m,|S))

FAU Technical Report TR-CSE-00-21 18

Table 7: Properties of the complexity of a system [16]

I. Nonnegativity. The complexity of a system is nonnegative.
2. Null value. The complexity of a system is null if its set of edges is empty.

3. Symmetry. The complexity of a system does not depend on the convention
chosen to represent the direction of edges.

4. Module monotonicity. Given a system, S, with any two modules, m; and
my. that have no edges in common, the complexity of the system is no
less than the sum of the complexities of the two modules.

Complezity(S) > Complexity(m,|S) + Complezity(m2|S)

5. Disjoint module additivity. Given a system, S, composed of two disjoint
modules, my and my, the complexity of the system is equal to the sum of
the complexities of the two modules.

Complezity(S) = Complexity(m,|S) + Complezity(m,|S)

Corollary

e Monotonicity. Adding an edge to a system does not decrease its complex-
ity.

Briand, Morasca, and Basili [16] further propose a set of properties that defines the
concept of the complexrity of a system. Table 7 summarizes the properties of this family
of measures. In a software metrics context, we reserve the term complexity for measures
that have these properties.

Briand, Morasca, and Basili [16] also propose a set of properties that defines the
concept the coupling of a modular system, where a module is a subsystem. Table 8
summarizes properties of coupling of graphs. We reserve _the term coupling of a modular

system for measures that have the properties in Table 8, which are essentially the same as

FAU Technical Report TR-CSE-00-21 19

Table 8: Properties of coupling of a modular system [16]

Concept/Properties

1. Nonnegativity. Coupling of a modular system is nonnegative.

2. Null value. Coupling of a modular system is null if its set of intermodule edges is
empty.

3. Monotonicity. Adding an intermodule edge to a modular system does not decrease
its coupling.

4. Merging of modules. If two modules, m; and my, are merged to form a new
module, m 2, that replaces m; and ms, then the coupling of the modular system
with 2 is not greater than the coupling of the modular system with m; and
ma.

5. Disjoint module additivity. If two modules, m; and my, which have no inter-
module edges between nodes in m; and nodes in mg, are merged to form a new
module, 0, that replaces my and mo, then the coupling of the modular system
with myug is equal to the coupling of the modular system with m; and ms.

in [16]. We reserve the term coupling of a module for measures that have the properties in
Table 9, which are essentially the same as in [16]. However, we substitute “intermodule”
for “output” edge in Properties 2 and 3. Practically speaking, our only difference with
Briand. Morasca, and Basili, is we make no distinction between inbound and outbound
coupling of a module.

Lastly, Briand, Morasca, and Basili [16] propose a set of properties that defines
the concept cohesion of a modular system. Table 10 summarizes the properties of this
family of measures and a corollary. Briand, Morasca, and Basili [16] also propose the set
of properties shown in Table 11 that defines the concept cohesion of a module where a

module 1s a subsystem.

FAU Technical Report TR-CSE-00-21 20

Table 9: Properties of coupling of a module [16]

Concept/Properties

1.

2.

3.

Nonnegativity. Coupling of a module is nonnegative.
Null value. Coupling of a module is null if its set of intermodule edges is empty.

Monotonicity. Adding an intermodule edge to a module does not decrease its module
coupling.

Merging of modules. If two modules, m; and my, are merged to form a new module,
miuz, that replaces my and mg, then the module coupling of 1,5 is not greater than
the sum of the module couplings of my and m,.

Disjoint module additivity. If two modules, m; and msy, which have no intermodule
edges between nodes in m; and nodes in my, are merged to form a new module, ms,
that replaces m; and m,, then the module coupling of myys is equal to the sum of
the module couplings of m; and mo.

Table 10: Properties of cohesion of a modular system [16]

Concept/Properties

L. Nonnegativity and Normalization. Cohesion of a modular system belongs
to a specified interval, Cohesion(MS) € [0, Max].

2. Null value. Cohesion of a modular system is null if its set of intramodule
edges is empty.

3. Monotonicity. Adding an intramodule edge to a modular system does not
decrease its cohesion.

4. Merging of modules. If two unrelated modules, m; and my, are merged
to form a new module, my,, that replaces m; and ms, then the cohesion
of the modular system with m_, is not greater than the cohesion of the
modular system with m; and m..

FAU Technical Report TR-CSE-00-21 29

operations. USAGE is the fraction of installations that had the given module installed;
it can be forecast from deployment records [43]. A case study of a telecommunications
system collected execution time measurements [62], RESCPU, BUSCPU, and TANCPU,
which can be derived from laboratory measurements of an earlier release using simulated
workloads on a standard hardware configuration. FEach metric represents the average
execution time in the given module of a transaction in the specified workload. Other
systems could measure execution time in a similar manner. Future research will refine
these metrics.

A case study for the EMERALD team [43] focused on customer-discovered faults,
rather than faults discovered during testing. The likelihood of failure during a period of
operations depends on both the likelihood of the existence of faults and the likelihood
of execution of code. Faults are discovered by customers only when the faulty code
is executed. Operational profiles are a tool of software reliability engineering to relate
faults and failures during operations [90]. When test inputs conform to an operational
profile, one can measure an execution profile of the system. An execution profile of a
software system consists of the probability of execution of each module. Consequently,
an execution profile can be viewed as a model of the exposure faulty code gets during
operations. Our working hypothesis is the intuitive notion that more exposure implies
more faults may be discovered by customers.

However, empirical data to calculate an execution profile may be difficult to obtain.
Our study showed that deployment records of past releases can be a valuable source of
data for calculating an approximation to the probability of execution.

Empirical data collection to support an execution profile can have many practical

problems. Data covering an entire customer-base is often difficult to obtain. Access to

FAU Technical Report TR-CSE-00-21 23

user sites may be limited when they belong to customer companies. A large number of
user sites in remote locations may multiply data collection costs. Execution profiles of
some systems are technically challenging to measure directly in an operational setting.
For example, embedded, real-time computer systems often do not lend themselves to
instrumentation outside the laboratory.

We propose a new module-level metric, USAGE, defined as the proportion of cus-
tomer systems with the module deployed. USAGE is an approximation of an execution
profile under the assumption that if a module 1s deploy(;d, it is also used. In contrast,
an ideal execution profile measures the probability of execution directly. Our measure
of USAGE currently has a range from zero to one, but future measures may be scaled
differently.

When the developer’s organization is involved in deployment at each customer site,
records of that activity are accessible. In a stable market, USAGE can be derived from
past deployment data, perhaps modified by current plans, without further intrusion at
customer sites. Telecommunications software is a good example of this class of software.

We analyzed a metric derived from deployment records which is a practical surrogate
for an execution profile in the context of a software quality model of a legacy system. We
define “usage” as the proportion of systems in the field which have a module deployed.
A case study of a very large telecommunications system investigated the significance of
usage in the context of a software quality model and found it was very useful [43].

USAGE is currently incorporated into EMERALD models. The EMERALD team an-
ticipates that refinements will be as well. The positive results of their study [43] demon-
strated the importance of execution profiles. Consequently, they are currently investing

in collection of execution profile data which will be a closer approximation to an ideal

FAU Technical Report TR-CSE-00-21 24

execution profile.

4 How should we measure?

A measurement protocol is a set of conditions that assures consistent repeatable mea-
surement of an attribute [75]. A valid protocol is independent of the measurer and the
measurement environment. A valid protocol is also compatible with the desired unit of
measure and the purpose of the measurement. Given a software system, various protocols

derive abstractions that are suitable for measurement.

4.1 Aggregation

Software entities can be measured at various levels of aggregation, ranging from an entire
system to individual tokens. We use the word module for the smallest entity that is
measured in a study; the size varies considerably from study to study. The following are

common levels of aggregation for software measurement, from largest to smallest.

e Svystem

Subsystem (on various levels)

Abstract data type

Source file

Object

e ['unction (method)

FAU Technical Report TR-CSE-00-21 25

Measurements of small entities can sometimes be arithmetically combined as a mea-

surement of a higher-level entity.

4.2 Abstractions

The approach of Briand, Morasca, and Basili [16] is compatible with any measurement
protocol that produces a graph representing some aspect of software design. Many de-
sign methods produce graphs as artifacts. An artifact created during the design phase
represents the design decisions made at that time, and embodies the abstraction of the
software that was used by the designer.

The procedural development paradigm typically produces certain kinds of artifacts,
while the object-oriented paradigm produces other kinds of artifacts. The following are
examples of different abstractions of software. Attributes of each abstraction could be

subject to measurement.

e Architecture graphs

Formal/informal model diagrams, such as UML or SDL diagrams.

e Data-flow diagrams

(‘all graphs

Inheritance diagrams

Message passing diagrams

Set/use graphs for global variables

e Control-flow graphs

FAU Technical Report TR-CSE-00-21 26
e Statements
e Tokens

Measurements of these abstractions will be valuable to the extent they reveal some-
thing about the intellectual process of developing software.

Briand, Daly, and Wist [12, 13] survey numerous proposed measures of coupling
and cohesion for object-oriented designs. Various abstractions are measured, such as
class inheritance, class type, method invocation, and class-attribute references, and thus,
various software attributes are measured.

Bieman et al. propose cohesion measures based on input/output dependence graphs

of designs [6], and slicing of code [7].

5 What i1s the standard for a measurement?

A measurement instrument is a tool for mapping an abstraction of software to a number
or category [75]. An instrument is usually designed to detect a particular unit of measure,
and assures that each unit of an attribute is equivalent within the constraints of mea-
surement error. A measurement instrument provides a standard unit of measurement.
Most traditional software metrics count artifact features, as though each item is equal in
the mind of a designer. The “measurement instrument” in each case is an algorithm for

detecting a feature, plus counting.

o
-1

FAU Technical Report TR-CSE-00-21

5.1 Units of measure

For example, Briand, Daly, and Wiist [13] propose an integrated measurement framework
for object-oriented coupling metrics, based on counts. The framework successfully en-
compasses many metrics proposed in the literature. Each qualifying metric is equivalent
to the number of edges of an appropriate graph. The unit of measure is the meaning of
an edge.

They also propose a similar framework for object-oriented cohesion metrics [12]. Due
to the properties of cohesion in Tables 10 and 11, cohesion is a ratio of like units where

a unit of the numerator or denominator is the meaning of an edge.

5.2 Calculating a measurement

The method for calculating a software metric implies the unit of measure and is essentially
the measurement instrument. This calculation is typically represented by an algorithm

that processes an abstraction of the software entity.

6 Is a measurement theoretically valid?

Kitchenham, Pfleeger, and Fenton draw from measurement theory to propose criteria for
theoretical validation of software metrics [75]. In their view, a theoretically valid measure

of a software attribute should fulfill the following criteria.
1. Attribute validity criteria. Is the attribute exhibited by the entity of interest?

(a) Distinguishing entities. A valid measure must distinguish different entities

from one another.

FAU Technical Report TR-CSE-00-21 28

(b) Representation condition. A valid measure must preserve our intuitive notions

about the attribute.

(¢c) Equivalent units. Each unit of an attribute is equivalent within the constraints

of measurement error.

(d) Same value allowed. Different entities may have the same measured attribute

value within the limits of measurement error.

2. Unit validity criteria. Is the unit of measure appropriate? The measurement scale-
type should fit its intended use. An alternative unit for the same attribute should

be an acceptable transformation of an established unit of measure.

3. Instrument validity criteria. Does the instrument specify how to capture measure-
ment data? A valid instrument should be accurate in a given unit of measure. In

particular, the instrument implements the criterion of Equivalent Units above.

4. Protocol validity criteria. Does the protocol assure consistent, repeatable measure-
ments that are independent of the measurer and the measurement environment? A
valid protocol should be unambiguous, self-consistent, and accepted by the software

engineering comimunity.

Of course, these theoretical criteria do not address whether a measure is useful in
software engineering practice [105]. Several studies have investigated the usefulness of

various object-oriented coupling measures [3, 10, 11, 35].

FAU Technical Report TR-CSE-00-21 29
7 Do measurements have practical value?

Scientists like to conduct controlled experiments to test theories about the laws of nature.
Accordingly, many software-metrics researchers would like to discover the “laws of nature
for software development™. For example, one might investigate the question, “What
are the causes of software errors?” Software quality models attempt to answer this
by a statistical model of the relationship between software metrics and software errors.
Unfortunately, due to the many human factors that influence software errors which cannot
be measured, controlled experiments to evaluate the usefulness of software quality models
are not practical [4, 98]. Therefore, we advocate the case-study approach as a useful

alternative, even though it is incapable of proving “laws of nature”.

7.1 Empirical studies

(Case studies are practical demonstrations of the usefulness of software quality models
[105]. In other words, a case study addresses the question, “Does a software quality
model have useful statistical accuracy and robustness to predict the value of a measure
of software errors?” A case study evaluates accuracy and robustness in a limited real-
world context.

FEach scale-type for a dependent variable demands a different kind of empirical mod-
eling technique. A nominal-scale dependent variable means a classification technique
should be used. An ordinal-scale dependent variable requires a rule for ordering modules
[48]. A ratio-scale dependent variable that is restricted to integers, such as the number of
errors, calls for a modeling technique such as Poisson regression. If a ratio-scale depen-

dent variable is modeled as a real number, such as the size of changes, then a wide variety

FAU Technical Report TR-CSE-00-21 30

of linear and nonlinear regression techniques may be applicable (66, 70], beginning with
multiple linear regression.

In a typical case study, we access historical data on one or more past projects where
actual software errors are known. A problem reporting system captures this informa-
tion. Software-attribute measures are considered independent variables. Configuration
management systems support recovery of archived versions of software artifacts. A case
study constructs models that could have been developed during the historical project,
and calculates predictions that could have been made. The accuracy of those predictions
1s then evaluated against the actual errors. A typical empirical case study will include

the following steps [65].

1. Retrieve a baseline artifacts of a historical project’s software development from the

configuration management system, e.g., source code.

2. Measure errors in modules from the historical project, based on data in a problem

reporting system.
3. Measure module attributes and attributes of the model-building process.

4. Prepare historical data as a fit data set and a test data set. The test data set should
be independent of the fit data set. When only one project’s data is available at a

time, we can randomly split the data into fit and test data sets.

n

Construct an empirical model by selecting significant independent variables and
estimating parameters, using an appropriate empirical modeling technique with

the fit data set.

FAU Technical Report TR-CSE-00-21 31

6. Evaluate the empirical model’s accuracy by predicting a measure of errors in each
module in the test data set, and comparing the predictions to the actual value. We
evaluate accuracy using statistics appropriate to the scale-type of the dependent

variable.

In the statistics literature, regression modeling studies typically use the terms fit
and test data sets, as explained above. However, in the classification and machine-
learning literature, the same data sets are often called training and evaluation data
sets, respectively. Moreover, in the regression literature, variables are categorized as a
dependent variable or independent variables, but the classification and machine-learning
literature speaks of a response variable and predictors. This difference in terminology is
merely an artifact of history. In this paper, we use whichever terminology is traditional

for the context.

7.2 Threats to validity

Threats to internal validity are unaccounted influences that may affect case study results.
[n software engineering practice, software faults are caused by a wide variety of conditions.
The number of faults attributed to each module may have been influenced by things that
were not measured. We mitigate this threat to internal validity by defining measures in
many dimensions on various abstractions of the design.

Threats to external validity are conditions that limit generalization of results. We
often use the case study approach, because controlled experiments are often performed
in artificial settings that are not realistic enough to be externally valid. Case studies also

have inherent limits on the generalizability of results due to the wide variety of software

FAU Technical Report TR-CSE-00-21 32

development organizations. To be credible, the software engineering community demands

that the subject of an empirical study be a system with the following characteristics [114].
I. Developed by a group, rather than an individual;
2. Developed by professionals, rather than students;
3. Developed in an industrial environment, rather than an artificial setting;
4. Large enough to be comparable to real industry projects.

We fulfill all of these criteria through collaborative arrangements with software develop-
ment organizations, and thus, avoid threats-to-validity due to artificial settings.
Multiple case studies provide a sampling of possible dependent variables, and ev-
idence of consistency of results across software projects, because software applications
have distinct product characteristics, and software is developed under a variety of con-

ditions in various organizations.

8 How do we use measurements?

Application of a software quality model is when measurements on a system currently
under development are input to the model. so that predictions can be calculated. At
that point in time, one does not know whether the predictions are true, but one can
make management and design decisions based on the predictions, because a relevant
case-study achieved a certain level of accuracy.

For example, EMERALD provides access to metrics of source code, problems related

to source code, and usage profiles [39]. It also provides access to risk models based on

FAU Technical Report TR-CSE-00-21 33

those metrics. For example, at the time of a high-level design review for a new release,
suppose EMERALD indicates that certain modules are at risk when changed. After a
review, the design team may choose to reengineer these modules first, before continuing
implementation of the new release. Risk assessments can also be valuable when assigning
technical staff to test, test automation, and maintenance efforts, and when matching
skill level and experience with complexity. Moreover, during maintenance, any changes

proposed for high risk modules can entail more stringent justification and inspection.

9 Modeling details

A recent status report [100] on the field of software measurement highlights gaps be-
tween current research and practice. For example, practitioners want accurate, timely
predictions of which modules have high risk, but researchers have yet to find adequate,
widely applicable measures and models. Faults are a result of mistakes or omissions by
developers, and relevant human behavior in the workplace is notoriously difficult to mea-
sure directly. In other words, there is no comprehensive scientific theory linking software
metrics and software errors [28].

We take a more pragmatic approach as described in [60] and in [53]. We capture
relevant variation among modules with practical metrics, even though the underlying hu-
man behavior is not well understood. Instead of expensive, specialized data collection, we
leverage existing databases collected for other purposes, so that the marginal cost of data
collection is modest. Rather than waiting for researchers to formulate a general theory,
we achieve useful accuracy by empirically calibrating models to each local development

environment,

FAU Technical Report TR-CSE-00-21 34

Fayvad [24] defines knowledge discovery in databases as “the nontrivial process of
identifying valid, novel, potentially useful, and ultimately understandable patterns in
data.” Fayyad restricts the term data mining to one step in the knowledge-discovery
process, namely, extracting patterns or fitting models from data. Others use the term
more broadly. “Primary data analysis™ in statistics is motivated by a particular set of
questions that are formulated before acquiring the data. In contrast, data mining analyzes
data that has been collected for some other reason. Hand [34] defines data mining
as “the process of secondary analysis of large databases aimed at finding unsuspected
relationships which are of interest or value to the database owners.” Data mining is most
appropriate when one seeks valuable bits of knowledge in large amounts of data collected
for some other purpose, and when the amount of data is so large that manual analysis is
not possible.

This aptly describes software quality modeling, especially when operational faults
are rare. Many software development organizations have very large databases for project
management, configuration management, and problem reporting which capture data on
individual events during development. For large legacy systems or product lines, the
amount of available data can be overwhelming. Manual analysis is certainly not possible.
However, we have found that these databases do contain indicators of which modules will
likely have operational faults.

Given a set of large databases or a data warehouse, Fayyvad et al. give a framework of
major steps in the knowledge-discovery process [25]: (1) selection and sampling of data;
(2) preprocessing and cleaning of data; (3) data reduction and transformation; (4) data
mining: and (5) evaluation of knowledge. We apply Fayyad’s framework to predicting

software quality from software development databases. We extracted knowledge from a

FAU Technical Report TR-CSE-00-21 35

Data Warehouse

Measurements
Past Releases
Target data
1.Measure a i
@ Clean data
2. Select
a Evaluation data

3. Preprocess Training data

Current Release Measurements &
- ' 4. Transform @ a
1.Measure Target data i
d? Clean data a

5. Data mining
2. Select h

s

’
L
@ Transformed data /6. Evaluate [=) (Knowledge
3. Preprocess .
a f/ _\‘(}.
/
4. Transform @ ’ .’

£
ﬂ / Current Release
y

Model) C=p (_Quaity
Predictions
Developer

Figure 2: Exploit your gold mines

very large legacy telecommunication systems’s configuration management and problem
reporting databases. Our framework is shown in Figure 2.

Figure 2 has two similar tracks of processing steps. The upper track processes data
on past releases where fault data is known. The results of this track are an empirical

model. an assessment of its accuracy, and an interpretation of its structure. The lower

FAU Technical Report TR-CSE-00-21 36

track processes data on a current release that is still under development, predicting which
modules will be fault-prone through the empirical model. The human figure in the corner
represents a developer who will make use of the predictions, the expected accuracy, and
the knowledge derived from the model’s structure.

In Figure 2, the Data Warehouse represents software development databases, such
as configuration management systems and problem reporting systems, irrespective of the
storage system implementation.

In Figure 2 Step 2. Select, chooses data for study, resulting in target data. Step 3,
Preprocess, accounts for missing data and outliers in the target data, resulting in clean
data. Step 4, Transform, may extract features from the clean data, and may transform
data for improved modeling. The result is separate transformed data sets for training
and for evaluation. Step 5, Data mining, builds a model based on the training data. Step
6, Evaluate, assesses the model’s accuracy using the evaluation data, and analyzes the

model’s structure.

9.1 Data collection

The first step in Figure 2 measures available software development databases to de-
rive variables from source code, configuration management transactions, and problem
reporting transactions for one or more past releases. Pragmatic considerations usually
determine the set of available predictors. We do not advocate a particular set of soft-
ware metrics for software quality models to the exclusion of others recommended in the
literature. Because marginal data collection costs are modest, we prefer to apply data

mining to a large well-rounded set of metrics rather than limit the collection of software

FAU Technical Report TR-CSE-00-21 37

metrics according to predetermined research questions.

9.2 Data analysis

Univariate analysis. The following summarizes lessons learned in a study for the
EMERALD team [59]. The data set produced by data collection had data on over 18
thousand modules. Over 15 thousand faults were attributed to the system under study.

Some modules records did not contain metric data. Investigation by the data collec-
tion team found that most of them were empty files. These were not considered in our
analysis. Default values may need to be defined for missing metric values.

Because no metric in this study was meaningful for negative values, a negative
minimum value indicated a data collection anomaly.

A standard deviation of zero means that the metric was constant for all modules.
Such metrics are not useful as independent variables in a model.

A standard deviation greater than the mean indicates a distribution skewed toward
the small end. Many metrics have a distribution with a sparse tail at the high end.
Thus, one should avoid analysis techniques that assume a symmetric or even a “bell
curve” distribution.

Because our long term goal is to develop models that can identify fault-prone modules
and can predict faults, we consider the relationship between each metric and the total
number of faults, rather than fault density (faults/size).

Individual metrics are moderately correlated to faults. Typically, the single metric
with the highest correlation is lines of code, LOC. Other size related metrics have similar

correlations. Recall that correlation is a linear relationship. However, because a majority

FAU Technical Report TR-CSE-00-21 38

of modules have zero faults and most of the other modules have only a few, one would
not expect a simple linear model to predict very well. More sophisticated multivariate
models are often needed to achieve useful accuracy.

Practical considerations in using metrics also may be important, such as the follow-
ing.

In this case study, a very large number of modules had no faults. Some of the
modules were not in the metrics data set, and some faults were attributed to empty
modules. These faults were not considered in the analysis. These anomalies represented
very small fractions of the total modules and total faults. Therefore, we concluded that
a data set omitting these anomalies is still generally representative of the system.

A significant number of modules had no edges in the control flow graph. Therefore,
one should note that some modules may consist of declarations and/or data only.

We found that the number of independent paths, PTHIND, in a control flow graph
may have such large values that a sum of squares overflows the usual arithmetic capac-
ity of our statistical tool (greater than 10°*). This metric may be of practical use in
comparison techniques such as decision trees, but is not suitable for common statisti-
cal techniques. One approach is to consider all modules with PTHIND > 10,000 to be

equivalent for modeling purposes. Another approach is to transform the metric.

Principal components analysis. Considering the proliferation of software metrics
that purport to measure “complexity”, Munson and Khoshgoftaar demonstrated that
such metrics, in fact, characterize multidimensional variability in software attributes [87].
Consequently, rather than focus on just one metric at a time, many studies have developed

multivariate quality models. Khoshgoftaar, Szabo, and Woodcock [73] showed that a

FAU Technical Report TR-CSE-00-21 39

multiple regression model can have better predictive quality than a simple regression
model based on the best single metric. They reason that a model accounting for more
sources of variability is likely to be more robust for a new project. Khoshgoftaar and
Allen also illustrate that a multivariate classification model can be more accurate than
a model based on the best single metric of the set [45].

All modeling techniques have limitations. Multivariate models can be misleading if
the underlying metrics are highly correlated. Correlation among independent variables in
a model is called multicollinearity. In such situations, insignificant variations in the data
can result in drastically different model parameters. This condition is called an unstable
model. Preliminary analysis in a case study [59] indicated that, with a few exceptions,
most call graph metrics and control flow graph metrics are highly correlated with each
other. This is indicative of multicollinearity.

Munson and Khoshgoftaar propose using principal components analysis to transform
correlated metric data into orthogonal variables in order to avoid such problems [69, 87,
88]. Of course, there is no guarantee of improved results. After all, if the raw metrics are
only moderately correlated, a raw metrics model may be satisfactory. In practice, one
often finds that raw software metrics are highly correlated to each other, and thus, some
safeguards are in order, such as principal components analysis.

Software product metrics have a variety of units of measure, which are not readily
combined in a multivariate model. We transform all product metric variables, so that
each standardized variable has a mean of zero and a variance of one. Thus, the common
unit of measure becomes one standard deviation.

Principal components analysis is a statistical technique for transforming multivariate

data into orthogonal variables, and for reducing the number of variables without losing

FAU Technical Report TR-CSE-00-21 40

significant variation. The following summarizes our description of principal components
analysis in [57]. Suppose we have m measurements on n modules. Let Z be the n x m
matrix of standardized measurements where each row corresponds to a module and each
column is a standardized variable. Our principal components are linear combinations of
the m standardized random variables, Z;.....Z,,. The principal components represent
the same data in a new coordinate system, where the variability is maximized in each
direction and the principal components are uncorrelated [107]. If the covariance matrix of
Z 1s a real symmetric matrix with distinct roots, then one can calculate its eigenvalues,
A;. and its eigenvectors, e;,j = 1,...,m. Since the eigenvalues form a nonincreasing
series, A\; > ... > A, one can reduce the dimensionality of the data without significant
loss of explained variance by considering only the first p components, p < m, according
to some stopping rule, such as achieving a threshold of explained variance. For example,
choose the minimum p such that 3-%_, A;/m > 0.90 to achieve at least 90% of explained
variance. Let T be the m x p standardized transformation matrix whose columns are
defined as t; = ej-/\/)\j- for y = 1,...,p. Let D; be a principal component random
variable. and let D be an n x p matrix with D; values for each column, j = 1,...,p.
D; =17Zt; and D = ZT. When the underlying data is software metric data, we call each

D; a domain metric.
Transformations. We recommend that selection of product metrics be based on the
following general principles [59]..

e Total counts are preferred over means and maximums for predicting the value of a

quality factor.

FAU Technical Report TR-CSE-00-21 41
e Counts of disjoint subsets are preferred over counts of overlapping subsets.

e Metrics which are linear combinations of others are not desirable because they cause
singularities in some analysis techniques, and they do not contribute to multivariate

models.

e Variables with extremely large values or values extremely close to zero are not

practical to work with. A transformation is usually recommended.

Averages and mazxima. Our models typically do not predict fault intensity, but
rather are based on total faults. Intuitively, total software metrics are more closely re-
lated to this dependent variable. Total counts are usually ratio scale or stronger allowing
straightforward synthesis of quality models. Means and maximums entail careful consid-
eration of measure properties, because some models using them are not “meaningful” in
the sense of measurement theory.

Overlapping subsets. Overlapping subsets are inherently correlated. Multicollinear-
ity may confound underlying relationships with a quality factor, and thus, make interpre-
tation of a model unnecessarily difficult. We should avoid using variables that we know
by definition are significantly correlated.

Synthetic metrics. Sometimes the output of a metric analyzer includes quantities
that represents a software quality modeling ideas. Many are based on a synthesis of
primitive software metrics, rather than true software measurements. One should include
synthetic metrics in a model only when one is purposely adopting the underlying modeling
idea.

For example, EMERALD calculates the following synthetic metrics.

e Abductive Inference Machine. AIM is a composite complexity score.

FAU Technical Report TR-CSE-00-21 42

o Test Targeting Risk. TTRISK is a composite complexity index made up of AIM
and other factors.

o Complexitylevel. LEVELI, LEVEL2, LEVEL3, LEVELJ, and LEVELJ5each count

the number of procedures at each level of the Datrix routine complexity model.

e Metrics out of range. OUTRANGE is the number of routines with metrics out of
acceptable range, according to Datrix thresholds.

e Halstead metrics. HALDIF, HALEFF, HALLEN, HALLVL, HALVOC, and HALVOL
are synthetic metrics defined by Halstead [33].

e Conditional arc complexity. CNDCPLAV and CNDCPLMX are metrics based on
the Datrix model of conditional arc complexity.

e Volume of structures. CTRVOL and LOPSTRAV are metrics based on the Datrix

model of control structure volume.

e Weighted metrics. CTRBRCWT, ARCWT, CTRNSTWT, and LOPSTRWT are
metrics that weight arcs according to the number of statements in the arc.

e Statement complexity metrics. STMCPLAV and STMCPLSM are metrics based
on the Datrix model of statement complexity.

Very large values. In general, we recommend a logarithmic transformation of vari-
ables that have a very large range (many orders of magnitude). We found in a study
for the EMERALD team that the maximum value of the number of independent paths
(PTHIND) was too large for computation by the SAS statistics package. A base 2 loga-
rithmic transformation (LGPATH) was successfully employed by a case study [61].

In a study for the EMERALD team [61], their execution time metrics RESCPU,
BUSCPU, and TANCPU had ranges of more than six orders of magnitude. The raw
metrics were not significant in our logistic regression models based on product and process
metrics. Among transformations of these variables, we found that only log TANCPU was
significant, but the resulting model was not dramatically more accurate than the baseline

model.

FAU Technical Report TR-CSE-00-21 43

9.3 Prediction

Classification. A classification model has a dependent variable that has only two pos-
sible values [38]. Independent variables may be categorical, discrete, or continuous, ac-
cording to the modeling technique. Classification techniques include discriminant analysis
[63], discriminant coordinates, the discriminative power technique [106], logistic regres-
sion [3], classification trees [102], pattern recognition [9],, artificial neural networks [68],
case-based reasoning [5, 67], and fuzzy classification [21].

This section is based on [52, 54]. In software quality modeling, we usually consider

19

a module as an “observation”. In many of our studies [52], we use the groups not fault-
prone and fault-prone; other groups may be used in other circumstances. A classification
model predicts membership in one group or the other. However, since a model is not
likely to be perfect, some modules will probably be misclassified by the model, compared
to actual group membership. According to common statistics terminology, Type I errors
misclassify modules that are actually not fault-prone as fault-prone. Type II errors
misclassify modules that are actually fault-prone as not fault-prone.

We often model software development as a process that produces modules which are
random samples from a large population of modules that might have been developed.
From a Baysian viewpoint, our knowledge of the population is embodied in prior proba-
bilities of class membership, i.e., “prior” to knowing the attributes of any modules in the
sample. A classification technique, such as logistic regression, calculates the probability
of being fault-prone based on module attributes, but this is not enough. A decision rule

that minimizes misclassifications should also take into account the overall proportions of

the underlying populations for each group, as well [42].

FAU Technical Report TR-CSE-00-21 44

Let 7, be the prior probability of membership in the fault-prone group, and let 7.,
be the prior probability of membership in the not fault-prone group. We want to choose
prior probabilities that are appropriate for each set of modules that we classify. When
a large fit data set is representative of the population, we choose the prior probabilities,
T, and T, to be the proportion of fit modules in each group. Otherwise, we make
adjustments according to our knowledge about the data set. Most software engineering
classification models in the literature by other researchers use the uniform prior [3, 21, 68,
105, 108]. However, we have found that many techniques have poor accuracy on software
metric data using uniform priors, because the proportion of fault-prone modules is in
fact very small.

When judging quality of fit, we use priors based on the fit data set. When validating
a model with an independent data set, we consider whether or not its proportion of fault-
prone modules should be similar to the fit data set’s. If so, we use prior probabilities based
on the fit data set. When applying the model to other projects or subsequent releases
(application data sets), we may adjust prior probabilities based on our knowledge of
project attributes and plans.

In software engineering, the cost for acting on each type of erroneous prediction
will depend on the process improvement technique that uses the prediction [46]. For
example, suppose we apply a quality-enhancement processes, such as additional reviews,
to modules identified as fault-prone. The cost of a Type I misclassification is to waste
time on additional reviews of a module that is actually not fault-prone. The cost of
a Type Il misclassification is the lost opportunity to review a fault-prone module and
detect its faults earlier in development. A fault that might have been discovered during

a review will end up being discovered later in the project, when the cost of fixing it is

FAU Technical Report TR-CSE-00-21 45

l'l'lll(.'}l gl'(fa.[;(.‘-l'.

Let C'; be the cost of a Type I misclassification, and let (' be the cost of a Type I1
misclassification. A classification rule that minimizes the number of misclassifications
may include prior probabilities, but this is not enough. Not all misclassifications are
equivalent. Some types cost more than others. An optimal classification rule should

minimize the expected cost of misclassifications (£CM), given by
ECM = Cymugp Pr(fp|nfp) + Crime, Pr(nfp|fp) (2)

where Pr(fp|nfp) and Pr(nfp|fp) are the Type I and Type II misclassification rates, re-
spectively.

Given a classification model that estimates some measure of the likelihood of module
¢ being fault-prone, f,(x;), and not fault-prone, fug(x;), module ¢ can be classified as

fault-prone or not by a rule that minimizes the expected cost of misclassification.

not fault-prone 1f %,‘lfﬂ > (ECJ-L) (;&)
CE(LSS(X.;) = fp 1 nfp

(3)

fault-prone Otherwise

This rule minimizes the expected cost of misclassification (Equation (2)) as shown
in Johnson and Wichern [42], and generalizes when priors or costs are equal. We have
found that this rule is valuable in software engineering applications.

In many projects, costs of misclassification are difficult to estimate. Similarly, prior
probabilities may also be unknown or difficult to estimate. The minimum-expected-cost
rule in Equation (3) may be impractical in such cases. Thus, a more general rule that
does not require these parameters is needed.

There is a tradeoff between Pr(fp|nfp) and Pr(nfp|fp). We have observed that as one

goes down, the other goes up. Our goal 1s to design a practical, flexible classification rule

FAU Technical Report TR-CSE-00-21 46

that allows appropriate emphasis on each type of misclassification according to the needs
of the project. The following rule enables a project to select the best balance between

the misclassification rates.

not fault-prone if %‘% >(
Class(x;) = fpt™ (4)
fault-prone otherwise
where (1s a parameter which we can choose. We have observed in several empirical studies

that the misclassification rates, which range in value from zero to one, are monotonic
functions of (. We estimate these functions by repeated calculations with a fit data
set. Given a candidate value of (, we estimate Pr(fp|nfp) and Pr(nfp|fp). We repeat for
various values of (. Determining the ¢ that corresponds to a project’s preferred balance
between misclassification rates is straightforward when they are monotonic functions of
Q-.

The generalized classification rule in Equation (4) does not depend on our knowledge
of mug and m,, nor of €'y and Cyy, and thus, is useful when these quantities are difficult
to estimate. However, if information is available, having selected a preferred (, one
can interpret the value of (in terms of the priors ratio times the cost ratio, as in the
minimum-expected-cost rule.

If one chooses ¢ such that Pr(fp|nfp) = Pr(nfp|fp), then the larger misclassification
rate is minimized [107]. It is especially appropriate when mg, < g, e.g., LeGall et
al. [79] identified only 4% to 6% of modules as high-risk. In such cases, the maximum-
correct-classification rule is often unsatisfactory. Equal misclassification rates may also be
appropriate when C';;/Cy is so large that the minimum-expected-cost rule is unaffordable.

In practice, we can achieve only approximate equality due to finite discrete data sets.

FAU Technical Report TR-CSE-00-21 47

Order. We have learned from our industry collaborators that uncertain resource con-
straints may make classification models impractical. Consequently, we are developing
empirical modeling techniques that yield rank-order by faults [48, 50]. Preliminary re-
sults have produced robust empirical models and innovative model evaluation criteria.

Building on previous research that discussed ordering modules [29, 71, 94|, we are pur-

suing other practical uses for such models. The following is based on [50].

Predicting the exact number of faults in each module is often not necessary; previous
research has focused on classification models to identify fault-prone and not fault-prone
modules [8, 21, 56, 63, 88]. Such models require that fault-prone be defined before
modeling, usually via a threshold on the number of faults expected. However, due to
uncertain resource constraints that limit the amount of reliability-improvement effort,
software development managers often cannot choose an appropriate threshold at the
time of modeling. In such cases, a prediction of the rank-order of modules, from the least
to the most fault-prone, is more useful [71, 94]. With a predicted rank-order in hand,
one can select as many from the top of the list for reliability enhancement as resources
will allow.

A module-order model [55] predicts the rank-order of modules according to a quanti-
tative quality factor, such as the number of faults. A module-order model has an underly-
ing quantitative software quality model as the basis for predictions, without specifying a
priori a threshold to define fault-prone. We evaluate module-order models from a project
management perspective.

Our objective is to develop a model that will predict the relative quality of each
module, especially those which are most fault-prone. In particular, we are interested

in the order of modules according to the number of faults. Even though the number

FAU Technical Report TR-CSE-00-21 48

of faults is absolute scale when directly measured, our recommended use of a predicted
value is only ordinal scale [14]. Classification models, on the other hand, treat dependent
variables as nominal scale, such as whether a module is fault-prone or not. A module-

order model consists of the following components.

1. An underlying quantitative software quality model.

]

A ranking of modules according to a quality measure predicted by the underlying

model.

3. A procedure for evaluating the accuracy of a model’s ranking.

Suppose we have a quantitative model, F; = f(x;), where the number of faults, F},
in module 7 is a function of its software measurements, the vector x;. Let F(Xg) be the
estimate of F; by a fitted model, f(x;). We use a simple quantitative modeling technique,
multiple linear regression, without resorting to sophisticated estimation techniques [70].
Other quantitative modeling techniques could be used, such as nonlinear regression [66],
regression trees [32], or computational intelligence techniques [9, 30, 72, 80]. Future
research will investigate the effects of such refinements.

A simple underlying quantitative modeling technique is an advantage for module-
order modeling. Users of module-order models with familiar underlying modeling tech-
niques can easily see that the results were derived in a reasonable manner. Consequently,
the module-order modeling technique lends itself to user acceptance. Module-order mod-
els are not “black boxes”.

Let R, be the percentile rank of observation ¢ in a perfect ranking of modules ac-
cording to F;. Let R(x;) be the percentile rank of observation i in the predicted ranking

according to ﬁ(xf).

FAU Technical Report TR-CSE-00-21 49

Spearman correlation between actual and predicted rankings is a conventional ap-
proach to evaluating the accuracy of a module-order model [95, 109]. Spearman corre-
lation evaluates the exact order over the entire set of modules. It is not appropriate for
our application, because we do not care whether the rankings match exactly. Within the
group that is enhanced, the order they are enhanced does not matter. They get equal
treatment. Similarly. for those modules not enhanced, order does not matter. What
does matter is where a module falls in relationship to a cutoff percentile that marks the
end of the sequence of enhanced modules. However, at the time of modeling, we are
uncertain what the cutoff will be. We want the reliability enhancement processes to find
as many faults as possible. A module-order model enables management to enhance mod-
ules in the predicted order, confident that the total number of faults found will be close
to expectations, even though the order of enhancement may not be perfect. Based on
these considerations, the following is our evaluation procedure for a module-order model.
Given a model, and a validation data set indexed by z:

1. Management will choose to enhance modules in priority order, beginning with the
most fault-prone. However, the rank of the last module enhanced is uncertain at
the time of modeling. Determine a range of percentiles that covers management’s
options for the last module, based on the schedule and resources allocated to re-
liability enhancement and associated uncertainties. Choose a set of representative

cutoff percentiles, ¢, from that range.

]

For each cutoff percentile value of interest, ¢, define the number of faults accounted

for by modules above the percentile ¢:

Gle) = | F; (5)

FAU Technical Report TR-CSE-00-21 50

Gl)= Y F (6)

BR(x)>c
where higher ¢ corresponds to the more fault-prone modules.
3. Let (¢, be the total number of actual faults in the validation data set’s software
modules. Calculate the percentage of faults accounted for by each ranking, namely,
Gi(e)/Gyr and C:'((:)/G',U,, and depict the accuracy of the model with an Alberg

diagram [94].

4. Calculate a function measuring model performance, ¢(c), which indicates how
closely the faults accounted for by the model rankiug match those of the perfect

ranking.

(7)
Plot performance as a function of .

We want to identify only the worst modules, because resources are usually limited
for reliability enhancement. In our example [50], we chose 50 through 95 percentiles, in
5 percent increments as a hypothetical preferred set of cutoff percentiles. If resources
for reliability enhancement are indeed limited, it is unlikely that more than 50% of the
modules will be enhanced. Another project might choose different percentiles, but this set
illustrates our methodology. Cutoff percentiles can be calculated easily, if management’s
objective is in terms of the number of modules enhanced.

Ohlsson and Alberg introduce a variation of Pareto diagrams which they call “Alberg
diagrams” [94]. Curves are plotted for an ordering based on the actual number of faults,
and an ordering based on the number of faults predicted by a model. We employ Alberg

diagrams [94] in this paper as an informal depiction of model accuracy.

FAU Technical Report TR-CSE-00-21 51

In our context, an Alberg diagram consists of two curves, G(c)/G',y and CA%'((:)/GM
plotted as functions of the percentage of modules selected for reliability enhancement,
i.e., 1 —c. Modules are selected for reliability enhancement in descending order, beginning
with the most fault-prone. The percentages of all faults, G(¢)/G,: and G(¢)/G o, give us
insight into the importance of each cutoff percentile. If the two curves are close together,
then the model is considered accurate.

When model predictions are intended only for ordinal purposes, Ohlsson et al. [94,
95], consider the model with the smallest area between curves to be the most useful. In
case studies, they also compared models by the distance between the curves at selected
percentages of modules.

The percentage of faults in a perfect ranking, ¢(c), indicates the accuracy of the
model at a given ¢. The variation in ¢(c) over a range of ¢ indicates the robustness of
the model; small variation implies a robust model. A robust model is important in the
face of uncertain resources for reliability enhancement. Because the number of cutoff
percentiles is small, a statistical measure of robustness should be a simple measure of

variation, such as the range of ¢(c). We prefer a graphical presentation.

Quantity. A quantitative model is an equation (or algorithm) where the dependent
variable is a quantity that is a function of one or more independent variables. If one
supplies values for the independent variables, then one can calculate the value of the
dependent variable. The following is based on [65].

Even though we may have a long list of candidate independent variables, it is possible
that some do not significantly influence the dependent variable. If an insignificant variable

is included in the model. it may add noise to the results and may cloud interpretation of

FAU Technical Report TR-CSE-00-21 52

the model. For example. if a coefficient, a; for the j* variable in a linear model is not
significantly different from zero, then it is best to omit that term from the model. The
process of determining which variables are significant is called model selection.

Fach kind of mathematical model has its own techniques for selecting significant
variables. The following is an iterative statistical approach for multiple linear regression.
Having specified a list of candidate independent variables, variables are entered into the
model in an incremental manner, based on an I test from analysis of variance which is
recomputed for each change in the current model. Begin with no variables in the model.
Add the variable not already in the model with the best significance level, as long as its
significance is better than the threshold. Then remove the variable already in the model
with the worst significance level, as long as its significance is worse than the threshold.
Repeat these steps until no variable can be added to the model

Many models have a general mathematical form with parameters that must be chosen
so that the fit data set matches the model as closely as possible. This step consists of
estimating the values of such parameters.

When using a mathematical model, the parameters are known, the independent
variable values are known, and one then calculates dependent variable values. In con-
trast, when estimating model parameters, the independent variable values are known,
the dependent variable values are known, and one must solve for the best estimate of the
unknown parameter values by minimizing some overall measure of error.

For example, suppose we use multiple linear regression on the fit data set to estimate
model parameters. A multivariate linear model is an equation where the dependent
variable, y, is a linear function of the independent variables, xy,...,x,. Suppose there

are n observations in the fit data set, and the subscript i indicates data for the i*"

FAU Technical Report TR-CSE-00-21 53
observation. In general, a multivariate linear model has the following form.

Ui = @+ axa ...+ axg (8)

Yi = gt ayrig ..+ apr e (9)

where z;,...,2;, are the independent variables” values, ag,...,a, are parameters to
be estimated, 7; is the predicted value of the dependent variable, y; is the dependent
variable’s actual value, and e; = y; — 7, is the error for the i*" observation. In an example
software quality model, y is the number of faults and the independent variables are
software measurements. We estimate the parameters, ay,...,a,, using the least squares

method. This method chooses a set of parameter values that minimizes 3", ¢? [107].

9.4 Model evaluation

Outliers. In statistical modeling, a parameter estimation technique may be overly sen-
sitive to a few unusual observations in the fit data set, so that the model does not
accurately characterize the overall population of observations. Consequently, when ap-
plied to an independent data set drawn from the population, the model may not predict
accurately overall. The analyst may decide that the few overly influential observations
should be excluded from the fit data set, because they are not members of the population
that the model is intended to represent. Sometimes such observations turn out to be due
to data-collection problems, rather than true anomalies.

Each modeling technique has its own methods for detecting outliers. For example,
consider multiple linear regression [65]. Unfortunately, the least squares method is unduly
influenced by unusual data points, outliers. Such points may be inappropriate for the

model, and thus, we do not use outliers when estimating the final parameters. We

FAU Technical Report TR-CSE-00-21 54

detect outliers using the R-Student statistic [92]. An iterative process detects outliers,
removes them from the fit data set, fits the model again with the reduced fit data set,
and calculates R-Student statistics again, until there are no more outliers at the given
significance level. After all outliers have been removed from the fit data set, the final

parameters are estimated.

Unbiased estimates of accuracy. The parameters of a statistical model are estimated
using a fit data set. It is tacitly assumed that the observations in the fit data sets are a
fair representation of the population. Similarly, when a statistical model is evaluated, it
is assumed that the observations in the test data set are statistically independent of the
fit data set. When these assumptions are violated, the estimate of model accuracy may
be biased. In other words, the evaluation may be more optimistic than it should be. An
unbiased estimate of model accuracy is important in our context, because one intends
to use model predictions to guide software development activities. A biased evaluation
would give a false sense of security to the software developers. The following is based on
[47].

Each of the methods described below [20, p.392] evaluates the accuracy of a model
by predicting the dependent variable of each observation in the test data set, and then
calculating the accuracy. However, each method uses a different test data set.

Resubstitution. This method uses the fit data set as a test data set. Because the fit
and test data sets are not at all independent, this is the least realistic of the methods
discussed here. After model parameters are estimated, the dependent variable of each
observation in the fit data set is predicted. The accuracy characterizes “model fit”. This

assessment of model accuracy is often overly optimistic.

FAU Technical Report TR-CSE-00-21 55

Subsequent project. This method uses one project as a fit data set and a subsequent
similar project as a test data set. This is a realistic simulation of applying a software
quality model in practice. This method is sensitive to the degree of similarity between the
projects. One must address the question, “Is it appropriate to model the observations
in both projects as coming {rom the same population?” This same question must be
answered when applying the model in practice, as well.

Data splitting. This is sometimes called the “Holdout” method [31]. Fit and test
data sets are derived from a single data set by impartially sampling from available ob-
servations. This is also a simulation of applying a model in practice. Data splitting may
be appropriate when data on a similar subsequent project is not available. The propor-
tion of observations in each data set is chosen according to sample sizes needed for the
various statistical techniques to be employed. Consequently, this method often requires
large samples of available data. Statistical similarity of the fit and test data set is assured
by the partitioning method. If statistical variation in the partitioning is a concern, then
a number of data set pairs can be generated by random resampling, and then analyzed
(47].

C'ross-validation. This is sometimes called the “U-Method” [22, 78]. Suppose there
are n observations available. Let one observation be the test data set and all the others
be the fit data set. Build a model, and evaluate it for the current observation. Repeat for
each observation. resulting in n models. Let the accuracy summarize the n evaluations of
the models. In contrast to resubstitution, this does not have serious bias. This method
is appropriate for smaller data sets than data splitting, but involves more computation
per observation.

A variation of the cross-validation approach partitions the available data into disjoint

FAU Technical Report TR-CSE-00-21 56

test data sets. For example, if each test data set has one tenth of the observations, then
we generate v = 10 models, using the remaining nine tenths as a fit data set. This is
called “v-fold cross-validation” [32]. Since the test data sets do not have observations in

common, they are statistically independent.

Overfitting. One’s expectation for model accuracy is generally formed by experience
with the training data set. Querfitting is characterized by an adverse deviation from that
base of experience. An overfitted model reflects the structure of the training data set too
closely. Even though a model appears to be accurate on training data, if overfitted, the
accuracy estimated by resubstitution may be biased. Moreover, a software engineering
interpretation of an overfitted software quality model’s structure may not be true for
similar systems or subsequent releases.

The focus of this section is classification models of software quality based on software
metrics. For example, neural network models and classification-tree models are often
vulnerable to overfitting. The following is based on [51].

In the statistics literature, overfitting is often defined as bias, namely, the difference
between a model’s actual misclassification rate and its purported rate [110]. Overfitting
can be detected by a statistically unbiased estimate of model accuracy compared to its
possibly biased accuracy on training data. The difference is a measure of the degree of
overfitting. The total number of misclassifications can be a satisfactory measure of a
model’s accuracy if the proportions of each class are approximately equal and the two
kinds of costs of misclassification are about equal. However, in software engineering ap-
plications, the proportion of fault-prone modules is often small and the practical penalty

for misclassifying a fault-prone module as not fault-prone can be quite serious after re-

(1}
=1

FAU Technical Report TR-CSE-00-21

lease. Thus, we prefer the expected cost of misclassification as a measure of a model’s
accuracy.

In software engineering practice, the penalty for a Type 1l misclassification is often
much more severe than for a Type . A software enhancement technique, such as extra
reviews, typically has modest direct cost per module. The cost of a Type I misclassifica-
tion, ('; is the effort wasted on a not fault-prone module. On the other hand, the cost of
a Type Il misclassification, C'j;, is the lost opportunity to correct faults early. The conse-
quences of letting a fault go undetected until after release can be very expensive indeed.
We model the costs of misclassifying a module, C'; and 'y, as constants [47]. Future
research will consider more sophisticated cost functions. The expected cost of misclassi-
fication of one module, FCM, takes prior probabilities and costs of misclassification into

account.
ECM = Cr Pr(fp|nfp) Tusp + Cr1 Pr(nfplfp) 76 (10)

As a measure of overfitting, we propose the difference between expected costs of
misclassification estimated by an independent evaluation data set and a training data

set, normalized by the cost of a Type I misclassification. By Equation (10),

1
AECM = o (ECMo = ECMuin) (11)
’r
AFCM = Trnfp(Pf(fmﬂ-ﬁ})eval - Pl‘(fp|nfp)t.rain)
+ (_:?T“fp(PI'('nprp)wd - Pr(ﬂfp|fp)train) (12)

where subscripts indicate the training data set (train) and an evaluation data set (eval),
and (is per the classification rule in Equation (4) above. In our application, the unit

of measure is the cost of misclassifying a not fault-prone module. If AECM is positive,

FAU Technical Report TR-CSE-00-21 58

then the accuracy of the model on the training data set is somewhat misleading. When
AFECM is zero, we have avoided overfitting. If AECM is negative, then the accuracy of
the model on the evaluation data set is better than on the training data set, a pleasant

surprise.

9.5 Model utilization

When the parameters have been estimated, and given each set of independent variable
values. a model can calculate a value of the dependent variable. Since the independent
variables are known earlier than the actual value of the dependent variable, the calculated

value is a prediction.

10 What tools are available?

10.1 Configuration management systems

A configuration management system is an information system for managing multiple
versions of artifacts produced by software development processes. For example, most
configuration management systems support storage and retrieval of versions of source
code. Other features may regulate changes to source code, so that team members do
not interfere with each other, and record the history of changes for later review. Many
configuration management systems support storage of other development artifacts also.
A configuration management system is a major source of artifacts to measure (product

metrics) and of process metrics.

FAU Technical Report TR-CSE-00-21 59

10.2 Problem reporting systems

A problem reporting system is an information system for managing software faults from
initial discovery through distribution of fixes. In other words, it records events in the
debugging process. Most developers of large software products use such systems. A

problem reporting system is a major source of quality metrics and process metrics.

10.3 SATC’s tools

The Software Assurance Technology Center (SATC) at NASA Goddard Space Flight
(‘enter has been collecting code metrics for over seven years. In their data base, metrics
are aggregated to the project level.”

Non-object-oriented metrics are available for the following languages [104].

o

C++ (non-object-oriented viewpoint)

FORTRAN

e Ada
e Omnis
e Jovial
Object-oriented metrics are available for the following languages [104].
o ('++

e Java

JFor more information, see http://satc.gsfc.nasa.gov/

FAU Technical Report TR-CSE-00-21 60

Non-OO metrics.
- #Modules Total number of modules in a project
LOC Total lines of code (source+blank+comments)
Blank Total number of blank lines
% Comment Comm/(LOC — Blank)
ErecStmts Total number of executable statements
- C'omm Total number of comments (freestanding+inline)
#qgoto Total number of GOTOs
#sql Total number of SQL calls
CyclomaticComplexity Number of linearly independent test paths (McCabe)

ExtendedCyclomaticComplexity Similar to cyclomatic complexity extended by taking
into account compound decisions

OO metrics.
#File Total number of files
#(Classes Total number of classes
#NTLC Total number of top level classes
LOC Total lines of code (source+blank+comments)
Preprocess Total number of preprocessor lines (Imports) (e.g. #include)
Blank Total number of blank lines
Comm Total number of comments (freestanding+inline)
C'P Comment Percentage, Comm/(LOC — Blank)
NCNB Non-comment non-blank, also known as source lines of code

L ErecStmts Total number of executable statements

NOM Number of methods

FAU Technical Report TR-CSE-00-21 61

WM Weighted methods per class. Sum of cyclomatic complexities of the methods in

a class

C'BO Coupling between objects. Number of other classes whose methods or instance
variables are used by methods of this class

RFC Response for a class. Number of methods in the class plus number of methods
called by each of these methods, where each called method is counted once.

10.4 Datrix

Datrix is a software analyzer product developed by Bell Canada in collaboration with
others [82]. It is avaliable for quick trials, university researchers, and commercial users
under licence.?

These metrics are available for the following languages [18].
o (
o C++

e Java

Routine metrics.

RtnArgXplSum Sum of the explicit argument numbers (actual parameters) passed to
other function by all the explicit function calls made in the routine

RtnCalXpINbr Number of explicit function/method calls in the routine
RinCastXpINbr Number of explicit type casts in the routine

RitnComNbr Number of comment sections in the routine scope (between the routine
brackets {...})

RitnCom Vol Size in characters of all the comments in the routine, without considering
the comments within nested classes or routines

AInformation on Datrix is available at http://www.iro.umontreal.ca/labs/gelo/datrix/

FAU Technical Report TR-CSE-00-21 62

RinCplCtiAvg The mean control predicate complexity
RinCplCtiMaz The maximal control predicate complexity

RinCplCtlSum Total (sum) complexity of the control predicates (test expressions) com-
posing the decision and loop statements within the routine

RinCplCyeNbr Cyclomatic number of the routine

RinC'plEreAvg The mean executable statement complexity

RinCplEreMar The maximal executable statement complexity

RinCplExeSum Total (sum) complexity of the executable statements within the routine

RinStmDecRtnNbr Number of function/routine declaration statements within the rou-
tine

RtnStmDecObjNbr Number of variable/object declaration statements in the routine
RtnStmDecPrmNbr Number of parameters of the routine

RtnStmDec TypeNbr Number of type/class declaration statements in the routine
RtnLnsNbr Number of lines of the routine

RtnlnsSkpSum Number of full or partial lines skipped in the routine, due to syntax
errors

RinSepNbr Number of scopes within the scopes of the routine
RinScpNstLvlAvg Average nesting level of the scopes in the routine
RinScpNstLvlMar Maximal nesting level in the routine

RtnSepNstLolSum Sum of nesting level values for all scopes in the routine
RtnStm CtiBrkNbr Number of break statements in the routine
RtnStmCtlCase Nbr Number of C-language case-like statements in the routine
RitnStm CtHNbr Number of control-flow statements in the routine
RinStmCtThwNbr Number of throw (cast) statements in the routine

RinStm CtlCtnNbr Number of continue statements in the routine

RtnStmDecNbr Number of declarative statements in the routine

FAU Technical Report TR-CSE-00-21 63

RinStmCHDfItNbr Number of default statements in the routine
RinStmEre Nbr Number of executable statements in the routine
RinStmCtlGGotoNbr Number of goto statements in the routine

RinStm CtlfNbr Number of if statements in the routine

RtnLbINbr Number of label statements in the routine

RinStmCtlLop Nbr Number of loop statements in the routine

RtnStrnNbr Number of statements in the routine

RinStmNstLvlAvg Average nesting level of statements in the routine
RitnStmNstLvlSum Sum of nesting level values of each statement in of the routine
RinStmCtlRetNbr Number of return statements in the routine
RinStmCtlSwiNbr Number of C-language switch-like constructs in the routine

RtnStmXpdNbr Expanded statement number: size (in number of statements) of the
routine after expansion (limited loop unfolding operation)

RtnStzErrNbr Number of syntax error that occurred while parsing the routine

Class metrics.
ClaAttFinNbr Number of final attributes in the class
ClaAttHidRto Ratio of attribute hiding for the class
ClaAttNbr Number of (instance/variable) attributes in the class
ClaAttPriNbr Number of private attributes in the class
ClaAttProNbr Number of protected attributes in the class
ClaAtt PubNbr Number of public attributes in the class
ClaAttPtrNbr Number of (instance/variable) attributes of pointer type in the class
ClaAttStaNbr Number of static attributes in the class

ClaClaNstNbr Number of nested classes, where a nested class is a class defined within
the scope of another class

FAU Technical Report TR-CSE-00-21 64

ClaComNbr Number of comment sections in the class scope (between the class brackets
{...}), without considering the comments within nested classes or routines

ClaC'om Vol Size in characters of all the comments in the class, without considering the
comments within nested classes or routines

C(lalmplntNbr Number of interfaces implemented by the class

ClalnhDirNbr Number of direct parent classes found in the first level of inheritance of
that class

ClalnhIndNbr Total number of parent classes found in all inheritance levels of that class
ClalnhlLviMax Inhertance level of that class
ClaLnsNbr Number of lines of that class

ClaLnsSkpSum Number of full or partial lines skipped in the class, including empty
lines, due to syntax errors

ClaMetFinNbr Number of final methods in the class
ClaMetNbr Number of methods in the class

ClaMet PriNbr Number of private methods in the class
ClaMetProNbr Number of protected methods in the class
(laMet PubNbr Number of public methods in the class
ClaMet PurNbr Number of pure virtual methods in the class
ClaMetStaNbr Number of static methods in the class

(laMsgNbr Number of messages in the class, where a “message” is considered to be a
way to access the class, e.g. a class attribute or a class method

ClaNamLen Length of the class name

(laStrErrNbr Number of syntax error that occurred while parsing the class

FAU Technical Report TR-CSE-00-21 65

File metrics.

FilComGIbNbr Number of comment sections in the global scope of a file (thus excluding
the comments inside routine or class scopes within the file)

FilC'omGlb Vol Size in characters of all the comments in the global scope of a file (without
considering the comments inside routine or class scopes within the file)

FilCom TotNbr Total number of comment sections in the file (considering the comments
inside routine or class scopes within the file)

FilCom Tot Vol Size in characters of all the comments in the file (considering the com-
ments inside routine or class scopes within the file)

FilDecClaNbr Number of classes declared within the file

FilDecGne Typ Nbr Number of generic classes (template class declaration) declared within
the file

FilDecGndTyp TotNbr Total number of generated classes (template class instances) de-
clared within the file

FilDecStruNbr Number of struct types declared within the file
FilDecObjExtNbr Number of extern objects declared within the global scope of the file

FilDefObjGlIbNbr Number of global variables/objects defines within the global scope of
the file

FilDefRtnNbr Number of functions/routines defined within the file

FillneNbr Total number of files included by the current file

FillneDirNbr Total number of files directly included by the current file

FilLnsNbr Number of lines of the file

FillnsSkpSum Number of full or partial lines skipped in the file, due to syntax errors

FilStzErrNbr Number of full or partial lines skipped in the file, due to syntax errors

FAU Technical Report TR-CSE-00-21 66

Halstead metrics.
OpdNbr Total number of operands, N,
OpdUngNbr Number of distinct operands, n,
OprNbr Total number of operators, N,
OperlngNbr Number of distinct operators, ny
HalDif Difficulty, D
HalEff Effort,
HalLen Length, N
HallLvl Level, L
HalVoc Vocabulary, n

HalVol Volume, [

10.5 EMERALD

Enhanced Measurement for Early Risk Assessment of Latent Defects (EMERALD) is a
sophisticated system of decision support tools used by software designers and managers
to assess risk and improve software quality and reliability. It was developed by Nortel
Networks in partnership with Bell Canada and others [39]. The EMERALD team performs
services for projects within Nortel Networks and for outside clients.”

The following are available data elements on a per module basis [49].°

SFurther information about EMERALD is available from John P. Hudepohl, Nortel Networks, Research

Triangle Park, North Carolina. Email: hudepohl@nortelnetworks.com

%aka means “also known as”.

FAU Technical Report TR-CSE-00-21 67

Module identifiers.

STREAM Designation of system release.

MODULE Name of software unit. Basic unit for reported measurements.
DRU Development release unit. Name for architecture layer.

RELEASE The DRU release number for this module.

LOAD The load identifier for this module.

ARCHID Architecture group name.

Data provided by Datrix. EMERALD uses the Datrix metric analyzer, among others,

to collect metrics from source code.

Process data. The following data items were derived from the Nortel Networks prob-
lem reporting system and configuration management system.

PRS_PRS The number of internal problems found in this module during development
against the current release.

VO_PRS The number of beta-test problems found in this module during beta testing of
the latest release. (aka BETA_PR)

C'UST_PRS The number of field (external) problems found in the module against the
current release. (aka Faults)

UPDIND Indicator as to whether or not the module changed during development cycle.
(U'PD > 0 means changed)

PRS The total number of problems fixed during the development cycle (stream). (aka
TOT_FIX)
PRS = INT+ VO + EXT.

INT Total number of different problems that were fixed during current stream where the
problems originated from issues found by designers. (aka DES_FIX)

VO Total number of different problems that were fixed during current stream where the
problems originated from issues found by beta testing. VO stands for Verification
Office. (aka BETA_FIX)

FAU Technical Report TR-CSE-00-21 68

EXT Total number of different problems that were fixed during current stream where
the problems originated from issues found by external customers. (aka CUST_FIX)

FTUPD Total number of changes to the code for new feature reasons. (aka REQ_-UPD)
UPD Total number of changes to the code for any reason. (aka TOT_UPD)

DIFFFT Number of different feature identifiers used to change the module during current
stream. (aka REQ)

SGRTHTOT Net increase in source lines of code due to software changes. (aka SRC_GRO)

SMODTOT Net new and changed source lines of code due to software changes. (aka

SRC-MOD)

UNQUPDID Number of different designers creating changes for this module. (aka UNQ_DES)

VLOUPDSM Number of updates for any reason to this module by designers who had 10
or less total updates in entire Nortel career. (aka VLO_UPD)

LOUPDSM Number of updates for any reason to this module by designers who had 20
or less total updates in entire Nortel career. (aka LO_UPD)

AVGUPDNQO The average number of updates that a designer has had in their Nortel
career when they updated this module for any reason.

Execution data.

USAGE A rough measure of the deployment percentage of the module. Higher values
imply more widely deployed and used.

OPSCORE Operational Profile score on usage/criticality based on Bellcore study.

RESCPU Execution time (microseconds) of an average call on a switch serving residential
customers.

BUSCPU Execution time (microseconds) of an average call on a switch serving business
customers.

TANCPU Execution time (microseconds) of an average call on a tandem switch.

FAU Technical Report TR-CSE-00-21 69

Other data.
AIM Abductive Inference Machine — A composite complexity score.
TTRISK A composite complexity index made up of AIM and other factors.

Complexity level. LEVELL, LEVEL2, LEVEL3, LEVEL/, and LEVELS5 each count the

number of procedures at each level of the Datrix complexity model.

OUTRANGE Number of routines with metrics out of acceptable range, according to
DATRIX thresholds.

Halstead metrics. HALDIF, HALEFF, HALLEN, HALLVL, HALVOC, and HALVOL

are synthetic metrics defined by Halstead [33].

SSIZE Size of module (lines of code). (This was inconsistent with Datrix LOC.)

Synthetic variables. As part of FAU’s collaboration with the EMERALD team, we

defined the following variables.

TOT_PRS The total number of problems found in this module during development

against the current release. TOT_PRS = PRS_PRS+ VO_PRS + CUST_PRS

FILINC? The number of second and following file includes.

FILINC2 = FILINC — FILINCUQ
C'AL2 The number of second and following calls to others. CAL2 = CAL — CALUNQ

CNDCPLSM The total conditional arc complexity.
CNDCPLSM = CNDCPLAV x CND

CNDSPNSM The total span of conditional arcs.
CNDSPNSM = C'NDSPNAV x CND

CNDNOT The number of non-conditional arcs. CNDNOT = ARC' — CND
[FTH The number of non-loop conditional arcs. [F'TH= CND— LOP

LOPVOL The amount of control structure volume in loops.

LOPVOL = LOPSTRAV x CTRVOL

LGPATH The base two logarithm of the number of independent paths. In a case study,
the maximum value of PTHIND was 3.8E37, which was too large for statistical
processing. LGPATH = log, PTHIND

FAU Technical Report TR-CSE-00-21 70
NDSINT The number of internal nodes.
NDSINT = NDS — NDSENT — NDSEXT — NDSPND

STMCPLSM The total amount of statement complexity.
STMCPLSM = STMCPLAV x STM

VARLENSM The total length of variables.
VARLENSM = VARLENAV x VARUSDUQ

VARUSD? The number of second and following uses of variables.
VARUSD?2 = VARUSD — VARUSDU(Q

LO2UPDSM Number of updates for any reason to this module by designers who had
between 11 and 20 total updates in entire Nortel career.

LO2UPDSM = LOUPDSM — VLOUPDSM.

UPDNOSM The total number of updates that designers had in their Nortel careers when
they updated this module for any reason.

UPDNOSM = AVGUPDNO x UPD (aka UPD_CAR)

10.6 Logiscope

Logiscope RuleChecker is a commercially available software analyzer product of Telelogic

AB.” Metrics are available for the following languages, and are listed separately.
o C[112)

o C++ [113]

C metrics.

Textual complexity metrics.
STMT Number of statements
nl Number of distinct operators

N1 Number of operator occurrences

“Information on Logiscope RuleChecker is available at http://www.telelogic.com/logiscope/

FAU Technical Report TR-CSE-00-21 71

n2 Number of distinct operands

N2 Number of operand occurrences

PR_LGTH Program length, N

AV(GS Average size of statements, AVGS = (N1 + N2)/STMT

VOCF Vocabulary frequency, (N1 + N2)/(ni + n2)

Structural complexity metrics.

RETU Number of return statements

N_IN Number of entry nodes

N_OUT Number of exit nodes

NB_IO Number of entry and exit nodes, NB_IO = N_IN+ N_OUT

GOTO Number of GOTO statements

COND_STRUCT Number of specific branchings (e.g. BREAK or CONTINUE)
NEST Maximum number of nesting levels

VG Cyclomatic number, VG = E — N + 1

PATH Number of paths

Data complexity metrics.

UPRO Number of unknown prototypes

MACP Number of time macro instructions with parameters are used
MACC Number of time macro instructions (constants) are used
MAC Number of macro instructions, MAC' = MACP+ MACC
C'ALL Number of function calls

CALL_PATHS Number of different function calls

LVAR Number of local variables

FAU Technical Report TR-CSE-00-21

=1
[S]

PARA Number of parameters

Comment melrics.

N_C'OM Number of blocks of comments
BC'OB Number of blocks of comments before the function

C'OM_R Number of blocks of comments per statement (comments rate)

COM_R = N_.COM/STMT
LCOM Number of lines of comments
LCOB Number of lines of comments before the function
C'C'OM Number of characters in comments

('C'OB Number of characters in comments before the function

C++ metrics.

Function-level metrics.

AVGA Sum of average size of instructions

BCOB Number of blocks of comments before the function

BCOM Number of blocks of comments in the function

CALL_PATHSe Number of Distinct calls to functions defined outside the class
CALL_PATHS: Number of Distinct calls to functions defined in the class
('ALLe Number of calls to functions defined outside the class

C'ALLi Number of calls to functions defined in the class

('COB Number of characters in comments before the function

C'COM Number of characters in comments

COND_STRUCT Number of specific branchings (e.g. BREAK or CONTINUE)
GOTO Number of GOTO statements

LC'OB Number of lines of comments before the function

FAU Technical Report TR-CSE-00-21

LC'OM Number of lines of comments

LEVL Number of levels

LMABS Number of abstract methods

LVAR Number of local variables

LVARop Number of class type local variables
MACC Number of time macro instructions (constants) are used
MACP Number of time macro instructions with parameters are used
N1 Number of operator occurrences

nl Number of distinct operators

N2 Number of operand occurrences

n2 Number of distinct operands

N_CDD Number of decision-to-decision paths
N_EXCEPT Number of exception handlers

N_GEN Number of generic parameters

N_RAISE Number of exception raise’s

N_STRUCT Number of decisions

NBCALLING Number of calling’s

NCONST Number of CONST declared variables
NINLINE Number of INLINE functions

PARAadd Number of parameters passed by address
PARAe¢ Number of class type parameters

PARAval Number of parameters passed by value
PATH Number of paths

RETU Number of return statements

STMT Number of statements

FAU Technical Report TR-CSE-00-21 74

[I_PARA Number of used parameters

VAR_PATHSe Number of distinct uses of external attributes
VAR_PATHSi Number of distinct uses of local attributes

VA Re Number of times external attributes are used

VAR{ Number of times local attributes are used

V(G Cyclomatic number, VG = E — N + 1

Class-level metrics.

BC'OBc Number of comment blocks before the class

BCOMe Number of comment blocks in the class

('C'OBc¢ Number of characters in comments before the class

C'COMe¢ Number of characters in the class comments

C'OBC Coupling between classes

LACT Sum of class-type attributes of the class

LAPI Number of private attributes of the class

LAPO Number of protected attributes of the class

LAPU Number of public attributes of the class

LC'OBe Number of lines of comments in the class

LCOMe Number of lines of comments before the class
LMCALL_PATHSe Total number of CALL_PATHSe from class methods
LMCALL_PATHSi Total number of CALL_PATHS: from class methods
LMCALLING Sum of methods” NBCALLING

LMDE Sum of methods defined in the class

LMPARA Sum of method parameters

LMPI Sum of private methods in the class

FAU Technical Report TR-CSE-00-21

LMPIPATH Sum of PATH for private methods in the class

LMPO Sum of protected methods in the class

LMPIPATH Sum of PATH for protected methods in the class

LMPU Number of public methods in teh class
LMPUPATH Sum of PATH for public methods in the class
LMPUPARA Sum of public method parameters

LMRE Sum of methods redefined in the class

LMU_PARA Sum of method U_PARA

LMVG Sum of method VG

LMVAR_PATHSe Total number of VAR_PATHSe used by class methods
LMVAR_PATHS: Total number of VAR_PATHS? used by class methods

MII Number of class parents
N_GENe Number of generic parameters in the class
NMD Number of dependent methods

NOC Number of class children

System-level melrics.
AVGA Sum of average size of instructions
CBO Coupling between objects
GA_CYCLE Call graph recursions
GA_EDGE Number of edges in the call graph
GA_LEVL number of levels in the call graph
GA_MAX_DEG Maximum number of calling/called functions
GA_MAX_IN Maximum number of callings

GA_MAX_OUT Maximum number of called functions

FAU Technical Report TR-CSE-00-21

GA_NODE Number of call graph nodes

GA_NSP Number of call graph roots

GA_NSS Number of call graph leaves

(/H_CPX Hierarchical complexity of inheritance graph
GH_EDGE Number of edges in teh inheritance graph
GH_LEVL Number of levels in the inheritance graph
GH-MAX_DEG Maximum numer of inherited/derived classes
GH_MAX_IN Maximum number of derived classes
GH_-MAX_OUT MAximum number of inherited classes
GH_NODE Number of classes in the inheritance graph
GH_NSP Number of leal classes

(GH_NSS Number of basic classes

GH_PC Protocol complexity of the inheritance graph
('H_URI Number of repeated inheritances

LC'A Number of classes

LMA Number of functions

NMABS Number of abstract methods

NMM Sum of member fucntions

VG A Sum of VG's

Halstead derived metrics.
n Vocabulary, n = nl + n2
N Length, N = N1+ N2
C'N Estimated length, CN = nllog, NI+ n2log, N2

V Volume, V' = N log, n

76

FAU Technical Report TR-CSE-00-21 77

V* Potential volume

L Level, L=V %[V

[Intelligence content, [= L V

D Difficulty, D = 1/L

LAMB Language level, A = L*V
E Effort, £ = V/L

T Implementation time, ' = £//18

B Potential errors, B = £2%/%/3000

10.7 FAU metrics analyzer for C

The Empirical Software Engineering Laboratory in the Department of Computer Science
and Engineering, Florida Atlantic University, developed a research tool for collecting

software metrics.® These metrics are available for ANsI C [44].

STMTS Number of executable statements

SEMIS Number of semicolons

ETA1 Number of unique oerators, 7,

N1 Total number of operators, N,

ETA2 Number of unique operands. 7,

N2 Total number of operands, NV,

LOOPS Number of loops in the control flow graph

NODES Number of nodes in the control flow graph

8Further information is available from Dr. Taghi Khoshgoftaar, Department of Computer Science and

Engineering, Florida Atlantic University, Boca Raton, Florida 33431, Email: taghi@cse.fau.edu

FAU Technical Report TR-CSE-00-21 78

EDGES Number of edges in teh control flow graph

VG Cyclomatic complexity

V(G2 Extended cyclomatic complexity, i.e. V(i plus the number of logical operators
CALLSIN Number of calls to a function

CALLSOUT Number of calls out from the function

BAND Belady’s bandwidth metric, which measure the average nesting level of the con-
trol flow graph

CALLSRCV Number of recursive calls

INPUTS Number of input parameters

OUTPUTS Number of output parameters (all pointer parameters are considered output)
DS Data structure complexity

(‘BLVARS Number of global references

Acknowledgments

We thank Ken McGill for his encouragement and support. We thank Bojan Cukic for
helpful discussions. This work was supported in part by Cooperative Agreement NCC 2-
1141 from NASA Ames Research Center, Software Technology Division (Independent
Verification and Validation Facility). The findings and opinions in this paper belong
solely to the authors, and are not necessarily those of the sponsor.

References

[1] W. W. Agresti and W. M. Evanco. Projecting software defects from analyzing Ada
designs. IEEE Transactions on Software Engineering, 18(11):988-997, Nov. 1992.

2] E. B. Allen and T. M. Khoshgoftaar. Measuring coupling and cohesion: An
information-theory approach. In Proceedings of the Sizth International Software
Metrics Symposium, pages 119-127, Boca Raton, Florida USA, Nov. 1999. [EEE
Computer Society.

3] V. R. Basili, L. C. Briand, and W. Melo. A validation of object-oriented de-
sign metrics as quality indicators. [FEE Transactions on Software Engineering,
22(10):751-761, Oct. 1996.

FAU Technical Report TR-CSE-00-21 79

[4]

9]

[10]

[11]

V. R. Basili, R. W. Selby. and D. H. Hutchens. Experimentation in software
engineering. [FEFE Transactions on Software Engineering, SE-12(7):733-743, July
1986.

Y. Berkovich. Software quality prediction using case-based reasoning. Master’s
thesis, Florida Atlantic University, Boca Raton, Florida USA, Aug. 2000. Advised
by Taghi M. Khoshgoftaar.

J. M. Bieman and B.-K. Kang. Measuring design-level cohesion. IEEE Transactions
on Software Engineering, 24(2):111-124, Feb. 1998.

J. M. Bieman and L. M. Ott. Measuring functional cohesion. IEEE Transactions
on Software Engineering, 20(8):644-657, Aug. 1994.

[.. C. Briand, V. R. Basili, and C. J. Hetmanski. Developing interpretable models
with optimized set reduction for identifying high-risk software components. [EEE
Transactions on Software Engineering, 19(11):1028-1044, Nov. 1993.

L. C. Briand, V. R. Basili, and W. M. Thomas. A pattern recognition approach for
software engineering data analysis. [EEE Transactions on Software Engineering,
18(11):931-942, Nov. 1992.

L. (. Briand, J. Daly, V. Porter, and J. Wiist. A comprehensive empirical validation
of design measures for object-oriented systems. In Proceedings Fifth International
Software Metrics Symposium, pages 246-257, Bethesda, MD USA, Nov. 1998. [EEE
Computer Society.

L. C. Briand, J. Daly, V. Porter, and J. Wiist. Predicting fault-prone classes with
design measures in object-oriented systems. In Proceedings the Ninth International
Symposium on Software Reliability Engineering, pages 334-343, Paderborn, Ger-
many, Nov. 1998. IEEE Computer Society.

L. C. Briand, J. W. Daly, and J. Wiist. A unified framework for cohesion mea-
surement in object-oriented systems. In Proceedings of the Fourth International
Symposium on Software Metrics, pages 43-53, Albuquerque, NM USA, Nov. 1997.
IEEE Computer Society.

L. C. Briand, J. W. Daly, and J. K. Wiist. A unified framework for coupling mea-
surement in object-oriented systems. [EEE Transactions on Software Engineering,
25(1):91-121, Jan. 1999.

L. C. Briand, K. El Emam, and S. Morasca. On the application of measurement
theory in software engineering. Empirical Software Engineering: An International
Journal, 1(1):61-88, 1996. See [15, 119].

FAU Technical Report TR-CSE-00-21 80

15]

[16]

L. C. Briand, K. El Emam, and S. Morasca. Reply to “Comments to the paper:
Briand, El Emam, Morasca: On the application of measurement theory in software
engineering”. Empirical Software Engineering: An International Journal, 2(3):317-
322, 1997. See [14, 119].

L. C. Briand, S. Morasca, and V. R. Basili. Property-based software engineering
measurement. [EEE Transactions on Software Engineering, 22(1):68-85, Jan. 1996.
See comments in [17, 101, 120].

L. C'. Briand, S. Morasca, and V. R. Basili. Response to: Comments on “Property-
based software engineering measurement”: Refining the additivity properties. IEEE
Transactions on Software Engineering, 23(3):196-197, Mar. 1997. See [16, 101].

B. Canada. Datriz Metric Reference Manual. Montreal, Quebec, Canada, version
4.0 edition, May 2000. For Datrix version 3.6.9.

S. R. Chidamber, D. P. Darcy, and C. F. Kemerer. Managerial use of metrics for
object-oriented software: An exploratory analysis. [EEFE Transactions on Software
Engineering, 24(8):629-639, Aug. 1998.

W. R. Dillon and M. Goldstein. Multivariate Analysis: Methods and Applications.
John Wiley & Sons, New York, 1984.

('. Ebert. Classification techniques for metric-based software development. Software
Quality Journal, 5(4):255-272, Dec. 1996.

B. Efron. Estimating the error rate of a prediction rule: Improvement on cross-
validation. Journal of the American Statistical Association, 78(382):316-331, June
1983.

W. M. Evanco and W. W. Agresti. A composite complexity approach for software
defect modeling. Software Quality Journal, 3(1):27-44, Mar. 1994.

U. M. Fayyad. Data mining and knowledge discovery: Making sense out of data.

[EEE Erpert, 11(4):20-25, Oct. 1996.

U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. The KDD process for ex-
tracting useful knowledge from volumes of data. Communications of the ACM,
39(11):27-34, Nov. 1996.

N. E. Fenton. Software Metrics: A Rigorous Approach. Chapman and Hall, London,
1991.

N. E. Fenton. Software measurement: A necessary scientific basis. IFEE Transac-
tions on Software Engineering, 20(3):199-206, Mar. 1994.

FAU Technical Report TR-CSE-00-21 81

(28]

[29]

[30]

[31]

[32]

(33]
[34]

[36]

(37]

(38]

[39]

N. E. Fenton and M. Neil. A critique of software defect prediction models. IEEE
Transactions on Software Engineering, 25(5):675-689, Sept. 1999.

N. E. Fenton and S. L. Pfleeger. Software Metrics: A Rigorous and Practical
Approach. PWS Publishing, London, 2d edition, 1997.

K. Ganesan, T. M. Khoshgoftaar, and E. B. Allen. Case-based software quality
prediction. International Journal of Software Engineering and Knowledge Engi-
neering, 9(6), 1999, In press.

S. Geisser. The predictive sample reuse method with applications. Journal of the
American Statistical Association, T0(350):320-328, June 1975.

S. S. Gokhale and M. R. Lyu. Regression tree modeling for the prediction of
software quality. In H. Pham, editor, Proceedings of the Third ISSAT International
Conference on Reliability and Quality in Design, pages 31-36, Anaheim, CA, Mar.
1997. International Society of Science and Applied Technologies.

M. H. Halstead. Elements of Software Science. Elsevier, New York, 1977.

D. J. Hand. Data mining: Statistics and more? The American Statistician,
52(2):112-118, May 1998.

R. Harrison, S. J. Counsell. and R. V. Nithi. An evaluation of the MOOD set
of object-oriented software metrics. [EEFE Transactions on Software Engineering,
24(6):491-496. June 1998.

B. Henderson-Sellers. Object-Oriented Metrics: Measures of Complexity. Prentice
Hall, Upper Saddle River, New Jersy USA, 1996.

S. Henry and D. Kafura. Software structure metrics based on information flow.
IEEE Transactions on Software Engineering, SE-7(5):510-518, Sept. 1981.

D. W. Hosmer, Jr. and S. Lemeshow. Applied Logistic Regression. John Wiley &
Sons, New York, 1989.

J. P. Hudepohl, S. J. Aud, T. M. Khoshgoftaar, E. B. Allen, and J. Mayrand.
EMERALD: Software metrics and models on the desktop. IEEFE Software, 13(5):56—
60, Sept. 1996.

IEEE Computer Society. Proceedings: Sixth International Software Metrics Sym-
posium, Boca Raton, Florida USA, Nov. 1999. IEEE Computer Society Press.

IEEE Computer Society. Proceedings: Tenth International Symposium on Software
Reliability Engineering, Boca Raton, Florida USA, Nov. 1999. IEEE Computer

Society Press.

FAU Technical Report TR-CSE-00-21 82

42

[43]

46

[49]

[50]

R. A. Johnson and D. W. Wichern. Applied Multivariate Statistical Analysis. Pren-
tice Hall, Englewood Cliffs, NJ, 3d edition, 1992.

W. D. Jones, J. P. Hudepohl, T. M. Khoshgoftaar, and E. B. Allen. Application of a
usage profile in software quality models. In Proceedings of the Third European Con-

ference on Software Maintenance and Reengineering, pages 148-157, Amsterdam,

Netherlands, Mar. 1999. IEEE Computer Society.

S. Jordan. Software metrics collection: Two new research tools. Master’s thesis,
Florida Atlantic University, Boca Raton, FL, Dec. 1997. Advised by Taghi M.
Khoshgoftaar.

T. M. Khoshgoftaar and E. B. Allen. Multivariate assessment of complex software
systems: A comparative study. In Proceedings of the First International Conference
on Engineering of Complex Computer Systems, pages 389-396, Fort Lauderdale,
Florida USA, Nov. 1995. IEEE Computer Society.

T. M. Khoshgoftaar and E. B. Allen. The impact of costs of misclassification
on software quality modeling. In Proceedings of the Fourth International Software
Metrics Symposium, pages 54-62, Albuquerque, New Mexico USA, Nov. 1997. IEEE
Computer Society.

T. M. Khoshgoftaar and E. B. Allen. Classification of fault-prone software modules:
Prior probabilities, costs, and model evaluation. Empirical Software Engineering:
An International Journal, 3(3):275-298, Sept. 1998.

T. M. Khoshgoftaar and E. B. Allen. Predicting the order of fault-prone modules in
legacy software. In Proceedings of the Ninth International Symposium on Software
Reliability FEngineering, pages 344-353, Paderborn, Germany, Nov. 1998. IEEE

Computer Society.

T. M. Khoshgoftaar and E. B. Allen. The stability of software quality models over
multiple releases. Technical Report TR-CSE-98-25, Florida Atlantic University,
Boca Raton, Florida USA, Nov. 1998.

T. M. Khoshgoftaar and E. B. Allen. A comparative study of ordering and clas-
sification of fault-prone software modules. Empirical Software Engineering: An
International Journal, 4:159-186. 1999.

T. M. Khoshgoftaar and E. B. Allen. Controlling overfitting in classification-tree
models of software quality. Technical report, Florida Atlantic University, Boca
Raton, Florida USA, Sept. 1999.

FAU Technical Report TR-CSE-00-21 83

52)

[60]

[61]

[62]

T. M. Khoshgoftaar and . B. Allen. Logistic regression modeling of software qual-
ity. International Journal of Reliability, Quality and Safety Engineering, 6(4):303~
317, Dec. 1999.

T. M. Khoshgoftaar and E. B. Allen. Modeling the risk of software faults. Technical
Report TR-CSE-00-06, Florida Atlantic University, Boca Raton, Florida USA, Feb.
2000.

T. M. Khoshgoftaar and E. B. Allen. A practical classification rule for software
quality models. IEEE Transactions on Reliability, 49(2), June 2000. In press.

T. M. Khoshgoftaar, E. B. Allen, and J. C. Busbhoom. SMART: Software mea-
surement analysis and reliability toolkit. Technical Report TR-CSE-98-21, Florida
Atlantic University, Boca Raton, FL USA, July 1998.

T. M. Khoshgoftaar, E. B. Allen, N. Goel, A. Nandi, and J. McMullan. Detection
of software modules with high debug code churn in a very large legacy system. In
Proceedings of the Seventh International Symposium on Software Reliability Engi-
neering, pages 364-371, White Plains, NY, Oct. 1996. IEEE Computer Society.

T. M. Khoshgoftaar, E. B. Allen, R. Halstead, and G. P. Trio. Detection of fault-
prone software modules during a spiral life cycle. In Proceedings of the International
Conference on Software Maintenance, pages 69-76, Monterey, CA, Nov. 1996. IEEE
Computer Society.

T. M. Khoshgoftaar, E. B. Allen, R. Halstead, G. P. Trio, and R. Flass. Process
measures for predicting software quality. Computer, 31(4):66-72, Apr. 1998.

T. M. Khoshgoftaar, E. B. Allen, J. P. Hudepohl, S. J. Aud, and J. Mayrand.
Selecting software metrics for a large telecommunications system. In Proceedings
of the Fourth Software Engineering Research Forum, pages 221-229, Boca Raton,
FL, Nov. 1995.

T. M. Khoshgoftaar, E. B. Allen, W. D. Jones, and J. P. Hudepohl. Data mining
for predictiors of software quality. International Journal of Software Engineering
and Knowledge Engineering, 9(5):547-563, 1999.

T. M. Khoshgoftaar, E. B. Allen, W. D. Jones, and J. P. Hudepohl. Which software
modules have faults that will be discovered by customers? Journal of Software
Maintenance: Research and Practice, 11(1):1-18, Jan. 1999.

T. M. Khoshgoftaar, E. B. Allen, W. D. Jones, and J. P. Hudepohl. Accuracy of
software quality models over multiple releases. Annals of Software Engineering, 6,
2000. In press.

FAU Technical Report TR-CSE-00-21 84

(63] T. M. Khoshgoftaar, E. B. Allen, K. S. Kalaichelvan, and N. Goel. Early quality
prediction: A case study in telecommunications. IEEE Software, 13(1):65-71, Jan.
1996.

[64] T. M. Khoshgoftaar, E. B. Allen, K. S. Kalaichelvan, and N. Goel. The impact of
software evolution and reuse on software quality. Empirical Software Engineering:
An International Journal, 1(1):31-44, 1996.

(65] T. M. Khoshgoftaar, . B. Allen, K. S. Kalaichelvan, and N. Goel. Predictive mod-
eling of software quality for very large telecommunications systems. In Proceedings
of the International Communications Conference, volume 1, pages 214-219, Dallas,
TX, June 1996. IEEE Communications Society.

[66] T. M. Khoshgoftaar, B. B. Bhattacharyya, and G. D. Richardson. Predicting soft-
ware errors during development using nonlinear regression models: A comparative
study. [EEE Transactions on Reliability, 41(3):390-395, Sept. 1992.

[67] T. M. Khoshgoftaar, K. Ganesan, . B. Allen, F. D. Ross, R. Munikoti, N. Goel,
and A. Nandi. Predicting fault-prone modules with case-based reasoning. In Pro-
ceedings of the Eighth International Symposium on Software Reliability Engineer-
ing, pages 27-35, Albuquerque, New Mexico USA, Nov. 1997. IEEE Computer

Society.

[68] T. M. Khoshgoftaar and D. L. Lanning. A neural network approach for early
detection of program modules having high risk in the maintenance phase. Journal
of Systems and Software, 29(1):85-91, Apr. 1995.

[69] T. M. Khoshgoftaar and J. C. Munson. Predicting software development errors
using software complexity metrics. [EEE Journal on Selected Areas in Communi-
cations, 8(2):253-261, Feb. 1990.

(70] T. M. Khoshgoftaar, J. C. Munson, B. B. Bhattacharya, and G. D. Richardson.
Predictive modeling techniques of software quality from software measures. IEEE
Transactions on Software Engineering, 18(11):979-987, Nov. 1992.

[71] T. M. Khoshgoftaar, J. C. Munson, and D. L. Lanning. Alternative approaches
for the use of metrics to order programs by complexity. Journal of Systems and
Software, 24(3):211-221, Mar. 1994.

(72] T. M. Khoshgoftaar, A. S. Pandya, and D. L. Lanning. Application of neural
networks for predicting faults. Annals of Software Engineering, 1:141-154, 1995.

(73] T. M. Khoshgoftaar, R. M. Szabo, and T. G. Woodcock. An empirical study
of program quality during testing and maintenance. Software Quality Journal,
3(3):137-151, Sept. 1994.

FAU Technical Report TR-CSE-00-21 85

74

[75]

6]

B. A. Kitchenham and S. L. Pfleeger. Software quality: The elusive target. [EEE
Software, 13(1):12-21, Jan. 1996.

B. A. Kitchenham, S. L. Pfleeger, and N. E. Fenton. Towards a framework for
software measurement validation. [FEFE Transactions on Software Engineering,
21(12):929-944, Dec. 1995. See comments in [76, 86].

B. A. Kitchenham, S. L. Pfleeger, and N. E. Fenton. Reply to: Comments on
“Towards a framework for software measurement validation”. IEEE Transactions
on Software Engineering, 23(3):189, Mar. 1997. See [75, 86, 115].

D. H. Krantz, R. D. Luce. P. Suppes. and A. Tversky. Foundations of Measurement,
volume I: Additive and Polynomial Representations. Academic Press, New York,
1971.

P. A. Lachenbruch and M. R. Mickey. Estimation of error rates in discriminant
analysis. Technometrics, 10(1):1-11, Feb. 1968.

G. Le Gall, M. IF'. Adam. H. Derriennic, B. Moreau, and N. Valette. Studies on
measuring software. IEEE Journal of Selected Areas in Communications, 8(2):234-
245, Feb. 1990.

D. B. Leake. CBR in context: The present and future. In D. B. Leake, editor,
Clase-Based Reasoning: Fzxperiences, Lessons, and Future Directions, chapter 1,
pages 3-30. MIT Press, Cambridge, MA USA, 1996.

M. R. Lvu. Introduction. In M. R. Lyu, editor, Handbook of Software Reliability
Engineering, chapter 1, pages 3-25. McGraw-Hill, New York, 1996.

J. Mayrand and F. Coallier. System acquisition based on software product as-
sessment. In Proceedings of the Eighteenth International Conference on Software
Engineering, pages 210-219, Berlin, Mar. 1996. IEEE Computer Society.

T.J. McCabe. A complexity measure. [EEE Transactions on Software Engineering,
SE-2(4):308-320, Dec. 1976.

T. J. McCabe and C. W. Butler. Design complexity measurement and testing.
Communications of the ACM, 32(12):1415-1425, Dec. 1989.

S. Morasca and L. C. Briand. Towards a theoretical framework for measuring
software attributes. In Proceedings of the Fourth International Symposium on Soft-
ware Metrics, pages 119-126, Albuquerque, NM USA, Nov. 1997. IEEE Computer
Society.

FAU Technical Report TR-CSE-00-21 86

(36]

[87]

98]

[99]

S. Morasca, L. C. Briand, V. R. Basili, E. J. Weyuker, and M. V. Zelkowitz.
C'omments on “Towards a framework for software measurement validation”. [EFE
Transactions on Software Engineering, 23(3):187-188, Mar. 1997. See [75, 115].

J. C. Munson and T. M. Khoshgoftaar. The dimensionality of program complexity.
In Proceedings of the Eleventh International Conference on Software Engineering,
pages 245-253, Pittsburgh, Pennsylvania USA,| May 1989. IEEE Computer Society.

J. C. Munson and T. M. Khoshgoftaar. The detection of fault-prone programs.
IEEE Transactions on Software Engineering, 18(5):423-433, May 1992.

G. C. Murphy, D. N. W. G. Griswold, and E. S. Lan. An empirical study of static
call graph extractors. ACM Transactions on Software Engineering and Methodol-
ogy, T(2):158-191, Apr. 1998.

J. D. Musa. Operational profiles in software reliability engineering. [FEE Software,
10(2):14-32, Mar. 1993.

G. J. Myers. Composite/Structured Design. Van Nostrand Reinhold, New York,
1978.

| R. H. Myers. Classical and Modern Regression with Applications. Duxbury Series.

PWS-KENT Publishing, Boston, 1990.

R. J. Offen and R. Jeffery. Establishing software measurement programs. [EEFE
Software, 14(2):45-53, Mar. 1997.

N. Ohlsson and H. Alberg. Predicting fault-prone software modules in telephone
switches. IEEE Transactions on Software Engineering, 22(12):886-894, Dec. 1996.

N. Ohlsson, M. Helander, and C. Wohlin. Quality improvement by identification of
fault-prone modules using software design metrics. In Proceedings of the Sixth In-
ternational Conference on Software Quality, pages 2-13, Ottawa, Ontario, Canada,
Oct. 1996. Sponsored by ASQC.

P. Oman and S. L. Pfleeger, editors. Applying Software Metrics. IEEE Computer
Society Press, Los Alamitos, CA, 1997.

J. Pfanzagl. Theory of Measurement. Physica-Verlag, Wurzburg, 2d edition, 1971.
In cooperation with V. Baumann and H. Huber.

S. L. Pfleeger. Experimental design and analysis in software engineering. Annals
of Software Engineering, 1:219-253, 1995.

S. L. Pfleeger. Assessing measurement. [EEE Software, 14(2):25-26, Mar. 1997.

Editor’s introduction to special issue.

FAU Technical Report TR-CSE-00-21 87

[100]

[101]

[102]

[103]

104]

(105

1106]

107]

108]

[109)

[110]

[111]

[112]

(113]

S. L. Pfleeger., R. Jeffery. B. Curtis, and B. A. Kitchenham. Status report on
software measurement. [EEFE Software, 14(2):33-43, Mar. 1997.

G. Poels and G. Dedene. Comments on “Property-based software engineering mea-
surement”: Refining the additivity properties. [EEE Transactions on Software
Engineering, 23(3):190-195, Mar. 1997. See [16].

A. A. Porter and R. W. Selby. Empirically guided software development using
metric-based classification trees. IEEE Software, 7(2):46-54, Mar. 1990.

F. S. Roberts. Measurement Theory with Applications to Decisionmaking, Utiity,
and the Social Sciences, volume T of Encyclopedia of Mathematics and its Applica-
tions. Addison-Wesley, Reading, Massachusetts, 1979.

L. H. Rosenberg and A. Gallo. Object-oriented metrics for reliability. In Proceed-
ings: Fast Abstracts and Industrial Practices at the Tenth International Symposium
on Software Reliability Engineering, pages 116-132, Boca Raton, Florida USA, Nov.
1999. IEEE Computer Society. Abstract and presentation.

N. I'. Schneidewind. Methodology for validating software metrics. IEEE Transac-
tions on Software Engineering, 18(5):410-422, May 1992.

N. F. Schneidewind. Software metrics validation: Space Shuttle flight software
example. Annals of Software Engineering, 1:287-309, 1995.

G. A. F. Seber. Multivariate Observations. John Wiley and Sons, New York, 1984.

R. W. Selby and A. A. Porter. Learning from examples: Generation and evaluation
of decision trees for software resource analysis. [EEE Transactions on Software
Engineering, 14(12):1743-1756, Dec. 1988.

M. Shepperd and D. Ince. Design metrics and software maintainability: An exper-
imental investigation. Journal of Software Maintenance: Research and Practice,
3(4):215-232, Dec. 1991.

M. Stone and J. Rasp. The assessment of predictive accuracy and model overfitting:
An alternative approach. Journal of Business Finance and Accounting, 20(1):125~
131, Jan. 1993.

P. . Velleman and L. Wilkinson. Nominal, ordinal, interval, and ratio typologies
are misleading. The American Statistician, 47(1):65-72, Feb. 1993,

Verilog. Logiscope C' CodeChecker: User’s Guide, version 2.1 edition, 1996.

Verilog. Logiscope C++ CodeChecker: User’s Guide, version 2.0 edition, 1996.

FAU Technical Report TR-CSE-00-21

[114]

[117)

(18]

[119]

[120]

o
9.4}

L. G. Votta and A. A. Porter. Experimental software engineering: A report on
the state of the art. In Proceedings of the Seventeenth International Conference
on Software Engineering, pages 277-279, Seattle, WA, Apr. 1995. IEEE Computer
Society.

E. J. Weyuker. Evaluating software complexity measures. [FEE Transactions on
Software Engineering, 14(9):1357-1365, Sept. 1988,

W. E. Wong, J. R. Horgan, M. Syring, W. Zage, and D. Zage. Applying design
metrics to a large-scale software system. In Proceedings the Ninth International
Symposium on Software Reliability Engineering, pages 273-282, Paderborn, Ger-
many, Nov. 1998. IEEE Computer Society.

W. M. Zage and D. M. Zage. Evaluating design metrics on large-scale software.
IEEE Software, 10(4):75-80, July 1993.

H. Zuse. Software Complexity: Measures and Methods. deGuryter, Berlin, 1991.

H. Zuse. Comments to the paper: Briand, Emam, Morasca: On the application of
measurement theory in software engineering. Empirical Software Engineering: An
International Journal, 2(3):313-316, 1997. See [14, 15].

H. Zuse. Reply to: “Property-based software engineering measurement”. [EEE
Transactions on Software Engineering, 23(8):533, Aug. 1997. See [16].

